
The account table contains these columns:
ACCOUNT_ID NUMBER(12)NEW_BALANCE NUMBER(7,2)PREV_BALANCE NUMBER(7,2)FINANCE_CHARGE NUMBER(7,2)
With the least amount of effort, you want to display all of the rows in the account table.
Which query should you use?

Explanation:
You should use the following query to display all of the account table rows:
SELECT * FROM account;
The asterisk (*) in the SELECT clause selects all columns from a table, view, materialized view, or snapshot.
Using the asterisk (*) in the SELECT list simplifies the writing of such a query because the column names do not
have to be individually included.
You should not use the query that includes each column name in the SELECT list. Although this query will achieve
the desired results, it requires more effort than using an asterisk (*) in the SELECT list.
Both of the other options are incorrect because these statements fail. ALL is a keyword used in a FORUPDATE
clause or in a WHERE clause comparison condition. When used in a SELECT clause, the statement fails. ANY is an
operator used in a WHERE clause comparison condition. When used in a SELECT clause, the statement fails.

Item: 1 (Ref:1Z0-061.2.2.2)

SELECT * FROM account;
SELECT allFROM account;
SELECT anyFROM account;
SELECT account_id, new_balance, prev_balance, finance_chargeFROM account;

Answer:
SELECT * FROM account;

1Z0-061: Selects

Which statement, when executed, displays a zero if the prev_balance value is null and the new_balance
value is zero?

Explanation:
The following statement displays a zero if the prev_balance value is null and the new_balance value is zero:
SELECT NVL(.009 * prev_balance, 0) + new_balance "Current Balance"FROM account;
If a column value in an arithmetic expression is null, the expression evaluates to null. If the value of the prev_balance column is null, the expression .009 * prev_balance returns a null value. When the null value
is then used in an arithmetic expression, the value returned is UNKNOWN. When the value is UNKNOWN, no value is
displayed.
The first expression, .009 * prev_balance, is evaluated first because multiplication takes precedence over
addition. If the prev_balance value is null, it will be replaced with a 0, which is then used as part of an
arithmetic calculation. The NVL function is used to replace a null value with a value. The first expression
represents the column queried, and the second expression represents the string you want displayed if a null value is retrieved. The correct syntax of the NVL function is:
NVL(expression1, expression2)
The statement using NULL(.009 * prev_balance, 0) fails because NULL cannot be used by itself. It is not a
function.
The statement using IS NULL(.009 * prev_balance, 0) fails because of the invalid use of the IS NULL
comparison operator. The IS NULL operator should be used in the WHERE clause of a SQL statement to test for
null values.
The statement containing TO_NUMBER(.009 * prev_balance, 0) fails because of the invalid use of the
TO_NUMBER function. The TO_NUMBER function is used to convert a character data type value to a value of
NUMBER data type or a specific format. This functionality is not needed in this example.

Item: 2 (Ref:1Z0-061.2.2.5)

SELECT NVL(.009 * prev_balance, 0) + new_balance "Current Balance"FROM account;
SELECT NULL(.009 * prev_balance, 0) + new_balance "Current Balance"FROM account;
SELECT IS NULL(.009 * prev_balance, 0) + new_balance "Current Balance"FROM account;
SELECT TO_NUMBER(.009 * prev_balance) + new_balance "Current Balance"FROM account;

Answer:
SELECT NVL(.009 * prev_balance, 0) + new_balance "Current Balance"FROM account;

1Z0-061: Selects

The account table contains these columns:
ACCOUNT_ID NUMBER(12)NEW_PURCHASES NUMBER(7,2)PREV_BALANCE NUMBER(7,2)FINANCE_CHARGE NUMBER(7,2)PAYMENTS NUMBER(7,2)
You must print a report that contains the account number and the current balance for a particular customer. The current balance consists of the sum of an account's previous balance, new purchases, and finance charge. You must calculate the finance charge based on a rate of 1.5 percent of the previous balance. Payments must be deducted from this amount. The customer's account number is 543842.
Which SELECT statement should you use?

Explanation:
You should use the following SELECT statement:
SELECT account_id, new_purchases + prev_balance * 1.015 - payments FROM accountWHERE account_id = 543842;
To calculate the new balance on an account, the finance charge is calculated by multiplying the previous balance by .015. To include the previous balance amount, 1.015 is used instead of .015 (prev_balance * 1.015). The
result equals the previous balance plus the finance charge, which is .015 percent of the previous balance. After adding new purchases and subtracting the payments, the current balance calculation is complete.
Although parentheses indicate a higher precedence in arithmetic calculations in a SQL statement, they are not

Item: 3 (Ref:1Z0-061.2.2.1)

SELECT new_balance + finance_charge - payments
FROM accountWHERE account_id = 543842;
SELECT account_id, new_purchases + prev_balance * 1.015 - payments
FROM accountWHERE account_id = 543842;
SELECT account_id, new_purchases + (prev_balance * .015) - payments
FROM accountWHERE account_id = 543842;
SELECT account_id, new_purchases + (prev_balance * 1.015) + finance_charge -payments FROM accountWHERE account_id = 543842;

Answer:
SELECT account_id, new_purchases + prev_balance * 1.015 - payments
FROM accountWHERE account_id = 543842;

1Z0-061: Selects

needed in this scenario. Because multiplication has precedence over addition and subtraction and the parentheses surround the multiplication calculation, the parentheses have no impact.
The choice that starts with SELECT account_id, new_purchases + (prev_balance * 1.015) +
finance_charge - payments executes, but does not return the desired results. Instead of using the
finance_charge column, the finance charge value must be calculated based on a rate of .015.
The choice that starts with SELECT new_balance + finance_charge - payments returns undesired
results because the required current balance calculation is not used.
The choice that starts with SELECT clause SELECT account_id, new_purchases + (prev_balance
* .015) - payments calculates the new balance improperly by neglecting to add the previous balance into the
calculation.

1Z0-061: Selects

You query the database with this SQL statement:
SELECT id_number, NVL(100 / quantity, 0)FROM product;
Which SQL SELECT statement capabilities are performed by this query?

Explanation:
This query performs the projection capability of a SELECT statement, because only specific columns are returned.
Projection is performed when the SELECT clause contains a column or column list. Using an asterisk (*) in the
SELECT clause would also be an example of projection, because you would be choosing all columns.
All of the other options are incorrect. This query does not perform a selection because no restricting criteria are used. Restricting criteria would be placed in a WHERE clause, but this example does not contain a WHERE clause.
For example, you could include WHERE manufacturer_id = 'NF10032' in the query to limit the display
results to only those products with a manufacturer_id value of NF10032.
This query does not perform a join because only one table is queried. The join capability is used when two or more tables are joined, or linked, in a WHERE clause and data is queried.

Item: 4 (Ref:1Z0-061.2.1.1)

selection only
projection only
selection and projection only
projection, selection, and joining

Answer:
projection only

1Z0-061: Selects

The teacher table contains these columns:
ID NUMBER(9) Primary KeyLAST_NAME VARCHAR2(25)FIRST_NAME VARCHAR2(25)SUBJECT_ID NUMBER(9)
Which query should you use to display only the full name of each teacher along with the identification number of the subject each teacher is responsible for teaching?

Explanation:
You should use the following query to display only the full name of each teacher along with the identification number of the subject each teacher is responsible for teaching:
SELECT last_name, first_name, subject_idFROM teacher;
To restrict the columns displayed to last_name, first_name, and subject_id, you should place only these
columns in the SELECT list. You should place the columns you want to display in the order you want them
displayed and separate them with commas.
You should not use the statement that uses an asterisk (*) in the SELECT list because this statement returns all of
the columns in the teacher table. It returns all of the information requested, the full name as well as the subject
identification, but it also includes the identification number of the teacher, which is not a part of the desired results.

You should not use the statement that includes only the last_name and subject_id columns in the SELECT
list because this statement does not return the full name, as required in this scenario. The full name consists of the last_name and the first_name columns.
You should not use the statement that includes the last_name, first_name, and id columns in the SELECT
list because this statement does not include the subject identification. Instead, it includes the teacher identification number, id, which is not a part of the desired results.

Item: 5 (Ref:1Z0-061.2.2.3)

SELECT *FROM teacher;
SELECT last_name, subject_idFROM teacher;
SELECT last_name, first_name, idFROM teacher;
SELECT last_name, first_name, subject_idFROM teacher;

Answer:
SELECT last_name, first_name, subject_idFROM teacher;

1Z0-061: Selects

Examine the structure of the LINE_ITEM table shown in the exhibit:

You query the database with this SQL statement:
SELECT order_id||'-'||line_item_id||' '||product_id||' '||quantity "Purchase"FROM line_item;
Which component of the SELECT statement is a literal?

Explanation:
The literal component in this statement is '-'. A literal value is a value that is specified explicitly. When using the
concatenation operator (||) in a SELECT list, any literal date, expression, number, or character value must be
enclosed in single quotes. This statement contains three literal values ('-', ' ', and ' '), which is one hyphen
and two individual spaces.
The concatenation operator (||) is not a literal. The concatenation operator is used to concatenate, or combine,
data. By placing the concatenation operator between columns, expressions, spaces, or literal values, the items are combined and displayed as one concatenated value in the query results. The syntax of the concatenation operator is:
(column1|expression1)||(column2|expression2)[|| (column3|expression3)]...
"Purchase" is not a literal, but is a column alias for the concatenated string.
The quantity, order_id, line_item_id, and product_id components are columns, not literals.

Item: 6 (Ref:1Z0-061.2.2.6)

'-'
||
quantity
"Purchase"

Answer:
'-'

1Z0-061: Selects

The STUDENT table contains the following columns:
LAST_NAME VARCHAR2(25)FIRST_NAME VARCHAR2(25)EMAIL VARCHAR2(50)
You are writing a SELECT statement to retrieve the names of students that do NOT have an e-mail address.
SELECT last_name||', '||first_name "Student Name"FROM student
Which WHERE clause should you use to complete this statement?

Explanation:
You should use the WHERE clause that uses the IS NULL comparison operator. When testing for null values in
SQL, the IS NULL comparison operator should be used. This operator returns a Boolean value of TRUE when a
null value is found, and returns FALSE when a value exists. The rows returned by this query will consist of
students with no e-mail address.
You should not use the WHERE clause that uses the NOT operator with the IS NULL operator. When using the
NOT operator in combination with the IS NULL operator, a Boolean value of TRUE is returned when the condition
is false. This statement will execute successfully, but will not return the desired results. The rows returned using this WHERE clause would be students with an e-mail address.
You should not use the WHERE clauses that use the = or != operators. An equality operator (=) or other
comparison operator, such as !=, should not be used when testing for null values because a null value cannot be
equal or unequal to another value. Comparisons between nulls and other values do not return a TRUE or FALSE
value, but instead return a value of UNKNOWN.

Item: 7 (Ref:1Z0-061.2.2.7)

WHERE email = NULL;
WHERE email != NULL;
WHERE email IS NULL;
WHERE email IS NOT NULL;

Answer:
WHERE email IS NULL;

1Z0-061: Selects

1Z0-061: Selects

The account table contains these columns:
ACCOUNT_ID NUMBER(12)NEW_BALANCE NUMBER(7,2)PREV_BALANCE NUMBER(7,2)FINANCE_CHARGE NUMBER(7,2)
You must create statements to be mailed to all account holders. Each customer's statement must include the account holder's previous balance and finance charge in this format:
Previous Balance: 5000 Finance Charge: 45
Which SELECT statement will produce these results?

Explanation:
The following SELECT statement will produce the desired results:
SELECT 'Previous Balance: '||prev_balance||' Finance Charge: '||prev_balance * .009FROM account;
The concatenation operator (||) is used to concatenate, or combine, data. By placing the concatenation operator
between columns, expressions, spaces, or literal values, the items are combined and displayed as one concatenated value in the query results. The syntax of the concatenation operator is:
(column1|expression1)||(column2|expression2)[||(column3|expression3)]...
Literal values must be enclosed in single quotes. To add space between a column value and text, place the desired number of blank spaces inside the single quotation marks, such as with prev_balance||' Finance
Charge '. In this example a column is combined, or concatenated, to the text 'Finance Charge:' with
spaces separating them and a single space added to the end of the text. This returns the data in the desired format.
Because text cannot be combined with a column value using the concatenation operator unless single quotes surround the text, these SELECT statements will result in an error when executed:

Item: 8 (Ref:1Z0-061.2.2.4)

SELECT Previous Balance: ||prev_balance|| Finance Charge: ||prev_balance * .009FROM account;
SELECT 'Previous Balance:' ||prev_balance|| 'Finance Charge:' ||prev_balance * .009FROM account;
SELECT 'Previous Balance: '||prev_balance||' Finance Charge: '||prev_balance * .009FROM account;
SELECT "Previous Balance: "||prev_balance||" Finance Charge: "||prev_balance * .009FROM account;

Answer:
SELECT 'Previous Balance: '||prev_balance||' Finance Charge: '||prev_balance * .009FROM account;

1Z0-061: Selects

SELECT Previous Balance ||prev_balance|| Finance Charge ||prev_balance * .009FROM account;
SELECT "Previous Balance "||prev_balance||" Finance Charge "||prev_balance * .009FROM account;
The following SELECT statement will not result in an error, but will not return the desired results because the
spaces that are required between the text and column values displayed do not exist in the query results:
SELECT 'Previous Balance' ||prev_balance|| 'Finance Charge' ||prev_balance * .009FROM account;

1Z0-061: Selects

1Z0-061: Selects

