
Examine the data in the TEACHER table.

Evaluate this SQL statement:
SELECT last_name||', '||first_nameFROM teacherWHERE subject_id != NULLORDER BY last_name;
Which value is displayed FIRST when this query is executed?

Explanation:
No value is displayed. Because a NULL value cannot be compared to any value, comparison operators such as equal (=),
greater than (>), less than (<), and not equal to (!= or <>) will not produce the desired result. The NOT keyword should be
used with the IS NULL operator (IS NOT NULL) to test for NULL values, or the absence of data.
The following table summarizes how an expression is evaluated with different WHERE clause condition operators:

Item: 1 (Ref:1Z0-061.3.1.3)

Tsu, Ming
Hann, Jeff
Smith, Ellen
No value is displayed.
Jones, Karen
Hopewell, Mary Elizabeth

Answer:
No value is displayed.

1Z0-061: Restricting and Sorting

1Z0-061: Restricting and Sorting

The product table contains these columns:
PRODUCT_ID NUMBER(9)DESCRIPTION VARCHAR2(20)COST NUMBER(5,2)MANUFACTURER_ID VARCHAR2(10)
You want to display product costs with these desired results:

l The cost displayed for each product is twenty percent greater than the current price stored in the table
l The product's manufacturer ID is 25001, 25020, or 25050.
l Twenty percent of the product's original cost is less than $4.00.

Which statement should you use?

Explanation:
You should use the following statement:
SELECT description, cost * 1.20FROM productWHERE cost * .20 < 4.00AND manufacturer_id IN ('25001', '25020', '25050');
The desired result that the cost displayed be increased by 20 percent is achieved by multiplying cost by 1.20. By
multiplying the cost by 120 percent, 20 percent of the cost is added to the existing cost.
The desired result that the product's manufacturer_id be equal to 25001, 25050, or 25050 is achieved by using the IN
operator. The IN operator is used to match a column or expression's value with any of the values specified in a list. The
effect is the same as using the OR operator. The NOT keyword may precede the IN operator. The correct syntax using the
IN operator is:
column IN(value1 [,value2] ...)

Item: 2 (Ref:1Z0-061.3.1.9)

SELECT description, cost * .20FROM productWHERE cost * .20 < 4.00AND manufacturer_id BETWEEN '25001' AND '25050';
SELECT description, cost * 1.20FROM productWHERE cost * .20 < 4 AND manufacturer_id = ('25001', '25020', '25050');
SELECT description, cost * 1.20FROM productWHERE cost * .20 < 4.00AND manufacturer_id IN ('25001', '25020', '25050');
SELECT description, cost * 1.20FROM productWHERE cost * .20 < 4.00AND manufacturer_id ANY('25001', '25020', '25050');

Answer:
SELECT description, cost * 1.20FROM productWHERE cost * .20 < 4.00AND manufacturer_id IN ('25001', '25020', '25050');

1Z0-061: Restricting and Sorting

The desired result that the cost, when multiplied by 20 percent, be less than $4.00 is achieved by using the less than (<)
operator.
You should not use the statement containing the BETWEEN operator. The statement containing the BETWEEN operator
(BETWEEN '25001' AND '25050') achieves only one of the desired results. The statement successfully executes, but
returns more rows than desired. The first desired result, which specifies that the cost displayed be increased by 20 percent, is not achieved when multiplying the price by .20. The second desired result that specifies an item manufacturer ID of 25001, 25050, or 25050 is not achieved because the BETWEEN operator returns all rows that have a manufacturer_id
value between 25001 and 25050.
You should not use the statement containing the equality (=) operator. The statement containing the equality (=) operator (manufacturer_id = ('25001', '25020', '25050')) fails. The = operator must be compared to only one value. In
this scenario, it is compared to three values.
You should not use the statement containing the ANY operator. Using the ANY operator (ANY('25001', '25020',
'25050')) without an equality, inequality, or less than or greater than operator preceding it will cause the entire statement
to fail.

1Z0-061: Restricting and Sorting

The LINE_ITEM table contains these columns:
LINE_ITEM_ID NUMBER(9) Primary KeyORDER_ID NUMBER(9) PRODUCT_ID VARCHAR2(9)QUANTITY NUMBER(5)
Evaluate this SQL statement:
SELECT quantity, product_idFROM line_itemORDER BY quantity, product_id;
Which statement is true concerning the results of executing this statement?

Explanation:
The results are sorted numerically and then alphabetically. The ORDER BY clause sorts rows in descending or ascending
order. Because the quantity column is listed first in the ORDER BY clause, that sort will be performed first. The
quantity column has a numeric datatype, so the rows will first be sorted numerically. The product_id column has a
VARCHAR2 data type, so the rows will be sorted alphabetically for any duplicate quantity values.
The results are not sorted numerically only or alphabetically only because the columns listed in the ORDER BY clause are of
different data types, numeric and character.
The sort is not alphabetic and then numeric because the quantity column, which is a NUMBER data type, is listed in the
ORDER BY clause before the product_id column, which is a VARCHAR2 data type.

Item: 3 (Ref:1Z0-061.3.2.4)

The results are sorted numerically only.
The results are sorted alphabetically only.
The results are sorted numerically and then alphabetically.
The results are sorted alphabetically and then numerically.

Answer:
The results are sorted numerically and then alphabetically.

1Z0-061: Restricting and Sorting

Examine the structure of the LINE_ITEM table.

You want to display order ID numbers, product ID numbers, and the quantities ordered for each of the products ordered with these desired results:
l The volume of the item ordered must be 50 or greater.
l The displayed results must be sorted from lowest to the highest by order ID number, and then by product ID number.
l The items must belong to order numbers ranging from 1800 to 1900.

Evaluate this SQL statement:
SELECT order_id, product_id, quantityFROM line_itemWHERE quantity >= 50AND order_id IN(1800, 1900)ORDER BY order_id, product_id;
Which statement about using this query as the proposed solution is true?

Explanation:
With the SELECT statement given in this scenario, two of the desired results are achieved. The first desired result, which
specifies that the volume of the item ordered must be 50 or greater, is achieved with the clause WHERE quantity >= 50.
The second desired result, which specifies that the displayed results be sorted from lowest to highest by the order ID number and then by the product ID number, is achieved using the clause ORDER BY order_id, product_id.
When more than one column is listed in an ORDER BY clause, the results are sorted on the first column. If duplicate values
are returned on the first column, then a sort on the next column in the ORDER BY clause occurs.
The third desired result is not achieved. The given SELECT statement uses a condition of order_id IN(1800, 1900) as
one of the WHERE clause conditions, which only returns rows that have an order_id value of 1800 or 1900. To achieve
the third desired result, you should use the BETWEEN operator to test for a value in the specified range of 1800 through
1900, inclusive. The BETWEEN operator restricts the query results to be based on a column value being greater than or
equal to a specified low value and less than or equal to a specified high value.
In this scenario, the following query would achieve all of the desired results:

Item: 4 (Ref:1Z0-061.3.1.4)

One of the desired results is achieved.
Two of the desired results are achieved.
All of the desired results are achieved.
The statement generates an error.

Answer:
Two of the desired results are achieved.

1Z0-061: Restricting and Sorting

SELECT order_id, product_id, quantityFROM line_itemWHERE quantity >= 50AND order_id BETWEEN 1800 AND 1900ORDER BY order_id, product_id;

1Z0-061: Restricting and Sorting

Evaluate this SELECT statement:
SELECT order_num, &order_dateFROM &&ordertblWHERE order_date = '&order_date';
Which statement regarding the execution of this statement is true?

Explanation:
When executing this statement, the user will be prompted for the table name only the first time the statement is executed within a session. Substitution variables specified with the double ampersand (&&) are reusable. The user is prompted only
the first time the statement executes. The variable then remains available until the session ends or an UNDEFINE command
is issued for the variable. Substitution variables specified with the single ampersand (&) will prompt the user each time the
statement is executed.
The user will not be prompted for the table name each time the statement is executed because the substitution variable used in the FROM clause contains a double ampersand (&&).
The user will be prompted for one of the values in the SELECT list each time the statement is executed. The reason for this
is that only one of the two variables in the SELECT list uses a substitution variable. The other value in the SELECT list uses
the column name defined in the table. Thus, its value will be retrieved from the table, and not by prompting the user to interactively enter a value.
Substitution variables are allowed in any part of a SELECT statement. Therefore, the option stating that an error will occur
because substitution variables are not allowed in a WHERE clause is incorrect.
Substitution variables can be used more than once within a single SELECT statement. In this statement &order_date is
referenced twice. This is acceptable and does not generate an error. Therefore, the option stating that an error occurs because substitution variables must be unique within a SELECT statement is incorrect.

Item: 5 (Ref:1Z0-061.3.3.1)

The user will be prompted for the table name each time the statement is executed in a session.
The user will be prompted for the table name only the first time the statement is executed in a session.
The user will be prompted for all values in the select list each time the statement is executed in a session.
An error will occur when executing this statement because substitution variables are not allowed in a WHERE clause.
An error will occur when executing this statement because substitution variables must be unique within a SELECT
statement.

Answer:
The user will be prompted for the table name only the first time the statement is executed in a session.

1Z0-061: Restricting and Sorting

You want to query employee information and display the results sorted by the employee's department, then by their salaries from highest to lowest. When multiple employees within the same department share a last name, they must be displayed in alphabetical order by first name.
Which ORDER BY clause should you use in your query?

Explanation:
You should use the following ORDER BY clause:
ORDER BY department_id, salary DESC, last_name, first_name
Because the default sort order when using an ORDER BY clause is ascending (lowest to highest for numeric data, earliest to
latest for date data, and alphabetically for character data), only the salary column needs to use the DESC (the reverse of
ascending order) keyword to display salaries from the highest to the lowest.
The ORDER BY clause containing no keywords and the ORDER BY clause containing salary ASC do not return the
desired results because the salary data is displayed in ascending order rather than descending order.
The ORDER BY clause containing the concatenated columns executes successfully, but does not return the desired results
of placing the first names in alphabetical order when the last names are identical.

Item: 6 (Ref:1Z0-061.3.2.2)

ORDER BY department_id, salary, last_name, first_name
ORDER BY department_id, salary ASC, last_name, first_name
ORDER BY department_id, salary DESC, last_name, first_name
ORDER BY department_id, salary DESC, first_name ||' '|| last_name ASC

Answer:
ORDER BY department_id, salary DESC, last_name, first_name

1Z0-061: Restricting and Sorting

For which task would you use a WHERE clause in a SELECT statement?

Explanation:
You would use a WHERE clause in a SELECT statement to display only rows with a product_id value of 7382. A WHERE
clause uses a condition to qualify or restrict query results, such as to compare product_id values to 7382 using WHERE
product_id = 7382. A WHERE clause directly follows the FROM clause and contains one or more conditions that must be
met for a row to be returned in the query results.
Logical conditions may be created using the NOT, AND, and OR operators. Comparison conditions may also be created using
these operators: =, >, <, >=, <=, <>, !=, [NOT] BETWEEN...AND... , [NOT] IN, ANY, ALL, SOME, EXISTS, LIKE, and
IS [NOT] NULL.
You would not use a WHERE clause in a SELECT statement to designate the order table location. The storage location of a
table can be established when creating a table or altered after table creation. This is performed using the CREATE TABLE
or ALTER TABLE statements.
You would not use a WHERE clause in a SELECT statement to display only unique product_id values. To display only the
unique product_id values, use the DISTINCT keyword in a SELECT clause.
You would not use a WHERE clause in a SELECT statement to restrict the rows returned by a GROUP BY clause. To restrict
the rows returned by a GROUP BY clause, use the HAVING clause. The condition or conditions specified in the HAVING
clause are evaluated after applying any WHERE clause condition and performing the grouping.

Item: 7 (Ref:1Z0-061.3.1.8)

to display only rows with a product_id value of 7382
to designate the order table location
to display only unique product_id values
to restrict the rows returned by a GROUP BY clause

Answer:
to display only rows with a product_id value of 7382

1Z0-061: Restricting and Sorting

Examine the structure of the product table.

You want to display the product identification numbers of all products with 500 or more units available for immediate sale. You want the product identification numbers displayed numerically by supplier identification number, then by product identification number from lowest to highest.
Which statement should you use to achieve the required results?

Explanation:
You should use the following statement to achieve the desired results:
SELECT product_idFROM productWHERE qty_per_unit >= 500ORDER BY supplier_id, product_id;
With this statement, all identification numbers of products that have a quantity greater than or equal to 500 are displayed because the greater than or equal to (>=) comparison operator is used. The ORDER BY clause must contain the

Item: 8 (Ref:1Z0-061.3.2.7)

SELECT product_idFROM productWHERE qty_per_unit >= 500ORDER BY supplier_id, product_id;
SELECT product_idFROM productWHERE qty_per_unit >= 500SORT BY supplier_id, product_id;
SELECT product_idFROM productWHERE qty_per_unit >= 500ORDER BY supplier_id, product_id DESC;
SELECT product_idFROM productWHERE qty_per_unit > 500SORT BY supplier_id, product_id;

Answer:
SELECT product_idFROM productWHERE qty_per_unit >= 500ORDER BY supplier_id, product_id;

1Z0-061: Restricting and Sorting

supplier_id and product_id columns as requested. The product identification numbers are displayed by supplier
identification number in ascending order, and then within supplier identification number by product identification number, ordered from lowest to highest. The default sort order when using an ORDER BY clause is ascending (lowest to highest for
numeric data, earliest to latest for date data, and alphabetically for character data). Because this is the default sort order, no sort order keyword, ASC or DESC, is required in the ORDER BY clause.
You should not use either of the statements that contain a SORT BY clause. Both of these statements will fail to execute
because SORT BY is not a valid SELECT statement clause. If SORT BY were replaced with ORDER BY, one of the
statements would execute returning the desired results. The other would execute and return undesired results.
You should not use the statement that contains the DESC keyword. This statement executes successfully, but does not
return the desired results. The DESC keyword of the ORDER BY clause orders the values in ascending order by supplier
identification number, but then within supplier identification number the values are sorted from the highest to the lowest by product identification number. In this scenario, you wanted the rows to be sorted in ascending order by product identification number.

1Z0-061: Restricting and Sorting

Examine the data in the product table.

You execute the following query:
SELECT description, quantity, costFROM productWHERE manufacturer_id LIKE 'NF10032'AND NVL(cost, 0) < 5.00ORDER BY quantity DESC, cost;
Which result will the query provide?

Item: 9 (Ref:1Z0-061.3.2.3)

DESCRIPTION QUANTITY COST
----------- ------------ ---------
AA 2pk-battery 2513AAA 6pk-battery 546 3
DESCRIPTION QUANTITY COST----------- ------------ ---------AAA 8pk-battery 4.2AA 2pk-battery 2513AAA 6pk-battery 546 3
DESCRIPTION QUANTITY COST
----------- ------------ ---------
AAA 6pk-battery 546 3AAA 8pk-battery 4.2AA 2pk-battery 2513
DESCRIPTION QUANTITY COST----------- ------------ ---------AA 2pk-battery 2513AAA 6pk-battery 546 3AAA 8pk-battery 4.2

Answer:
DESCRIPTION QUANTITY COST----------- ------------ ---------AAA 8pk-battery 4.2AA 2pk-battery 2513AAA 6pk-battery 546 3

1Z0-061: Restricting and Sorting

Explanation:
The query will provide the following result:
DESCRIPTION QUANTITY COST----------- ------------ ---------AAA 8pk-battery 4.2AA 2pk-battery 2513AAA 6pk-battery 546 3
When a query is performed using an ascending sort on a column with null values, the null values are displayed last. When the default sort order of ascending (lowest to highest for numeric data, earliest to latest for date data, and alphabetically order for character data) is overridden using the DESC keyword (the reverse of ascending), the resulting display is reversed
with the null value(s) being displayed first. After any null values are displayed, the remaining values are displayed from the highest value to the lowest, as shown in this scenario.
The result that is missing the record with the null QUANTITY value is incorrect because any null QUANTITY values should
be displayed.
The result that is displaying the QUANTITY value of 546 first is incorrect because no sort order is used.
The result that is displaying the highest QUANTITY value first is incorrect because of the descending sort order that will
place any null values first.

1Z0-061: Restricting and Sorting

Examine the data in the product table.

Evaluate this SELECT statement:
SELECT description, costFROM productORDER BY cost, quantity;
Which statements are true? (Choose all that apply.)

Explanation:
The following statements are true in this scenario:

l The product_id values for the last two rows displayed are 140 and 126.
l The description value for the first two rows displayed is C 2pk-battery.

The ORDER BY clause specifies the order of the data retrieved by the query. The default sort order is ascending. When data
is sorted in ascending sequence, null values are displayed last. In this scenario, rows with a null value in the cost column
are displayed last. The product_ids associated with these rows are 140 and 126. The products with the lowest cost
determine which descriptions are displayed first. The lowest cost values are .75 and 1.00. The first two description
values, which are associated with these two cost values, are both C 2pk-battery. Because the lowest cost values
are .75 and 1.00, and there is only one of each of these values, a further sort on the quantity column is not necessary.
The product_id of the first record displayed is 725. This product_id is associated to the lowest cost value of .75.
The first two description values are C 2pk-battery. If null values were displayed first, instead of last , the
description value of AA 2pk-battery would be displayed for the first two rows.

Item: 10 (Ref:1Z0-061.3.2.1)

The product_id value for the first record displayed is 220.
The product_id values for the last two rows displayed are 140 and 126.
The description value for the first two rows displayed is C 2pk-battery.
The description value for the first two rows displayed is AA 2pk-battery.
No row with a product_id of 220 is displayed.

Answer:
The product_id values for the last two rows displayed are 140 and 126.
The description value for the first two rows displayed is C 2pk-battery.

1Z0-061: Restricting and Sorting

A row with the product_id of 220 is displayed when this query is executed.

1Z0-061: Restricting and Sorting

The account table contains these columns:
ACCOUNT_ID NUMBER(12)NEW_BALANCE NUMBER(7,2)PREV_BALANCE NUMBER(7,2)FINANCE_CHARGE NUMBER(7,2)
You need to create a single SELECT statement to accomplish these requirements:

l Display accounts that have a new balance that is less than the previous balance.
l Display accounts that have a finance charge that is less than $25.00.
l Display accounts that have no finance charge.

Evaluate this statement:
SELECT account_idFROM accountWHERE new_balance < prev_balanceAND NVL(finance_charge, 0) < 25;
How many of the three requirements will this SELECT statement accomplish?

Explanation:
The given SELECT statement will accomplish all of the requirements. The first desired result, to display accounts with a new
balance less than the previous balance, is achieved with the WHERE clause condition new_balance < prev_balance.
The second and third desired results, to display accounts with a finance charge less than $25.00 and accounts without a finance charge, are achieved with the WHERE clause condition NVL(finance_charge, 0) < 25. The NVL single-row
function is used to convert a null to an actual value and can be used on any data type, including VARCHAR2 columns. The syntax for the NVL function is:
NVL(expression1, expression2)
If expression1 is null, NVL returns expression2. If expression1 is not null, NVL returns expression1. The
expression1 and expression2 arguments can be of any datatype. When the expression datatypes differ, Oracle
converts expression2 to the datatype of expression1 before the two expressions are compared.
This query may also be used to display all of the desired results:
SELECT account_idFROM accountWHERE new_balance < prev_balanceAND finance_charge < 25OR finance_charge IS NULL;
All other options are incorrect because the given SELECT statement will accomplish all three requirements.

Item: 11 (Ref:1Z0-061.3.1.1)

all of the requirements
one of the requirements
two of the requirements
none of the requirements

Answer:
all of the requirements

1Z0-061: Restricting and Sorting

1Z0-061: Restricting and Sorting

Examine the data in the product table.

You query the product table with this SQL statement:
SELECT descriptionFROM productORDER BY manufacturer_id, quantity ASC;
What is the description value of the first row displayed?

Explanation:
The description value of the first row displayed is C 2pk-battery. When using an ORDER BY clause to sort the rows
returned from a query, the default sort order is ascending. An ascending sort order displays values from lowest to highest for numeric data, from earliest to latest for date data, and alphabetically for character data. Because ascending is the default sort order, it is not necessary to append the ASC keyword to the ORDER BY clause.
Because there is an ORDER BY clause on the manufacturer_id column, the manufacturer_id column values will be
used to order the results, even though only the description column is displayed. The first manufacturer_id value
alphabetically is EL7968. Of the two rows with a manufacturer_id value of EL7968 in the product table, the
description value of the row with the lowest quantity will be displayed first because there is also an ORDER BY on
quantity. This row has a description value of C 2pk-battery.
The description value of the first row displayed would be D 2pk-battery if the ORDER BY clause were on the
description column with a descending sort order.
The description value of the first row displayed would be AA 2pk-battery if the ORDER BY clause were on the
description column with the default ascending sort order.
The description value of the first row displayed would be AAA 6pk-battery if a descending ORDER BY clause were
used on both the manufacturer_id and the quantity columns.

Item: 12 (Ref:1Z0-061.3.2.8)

C 2pk-battery
D 2pk-battery
AA 2pk-battery
AAA 6pk-battery

Answer:
C 2pk-battery

1Z0-061: Restricting and Sorting

1Z0-061: Restricting and Sorting

Examine the structure of the line_item table.

You must display the order number, line item number, product identification number, and quantity of each item where the quantity ranges from 10 through 100. The order numbers must be in the range of 1500 through 1575. The results must be sorted by order number from lowest to highest, and then further sorted by quantity from highest to lowest.
Which statement should you use to display the desired results?

Explanation:
You should use the following statement to display the desired results:
SELECT order_id, line_item_id, product_id, quantityFROM line_itemWHERE quantity BETWEEN 10 AND 100AND order_id BETWEEN 1500 AND 1575ORDER BY order_id, quantity DESC;

Item: 13 (Ref:1Z0-061.3.2.5)

SELECT order_id, line_item_id, product_id, quantityFROM line_itemWHERE quantity BETWEEN 9 AND 101AND order_id BETWEEN 1500 AND 1575ORDER BY order_id DESC, quantity DESC;
SELECT order_id, line_item_id, product_id, quantityFROM line_itemWHERE (quantity > 10 AND quantity < 100)AND order_id BETWEEN 1500 AND 1575ORDER BY order_id ASC, quantity;
SELECT order_id, line_item_id, product_id, quantityFROM line_itemWHERE (quantity > 9 OR quantity < 101)AND order_id BETWEEN 1500 AND 1575ORDER BY order_id, quantity;
SELECT order_id, line_item_id, product_id, quantityFROM line_itemWHERE quantity BETWEEN 10 AND 100AND order_id BETWEEN 1500 AND 1575ORDER BY order_id, quantity DESC;

Answer:
SELECT order_id, line_item_id, product_id, quantityFROM line_itemWHERE quantity BETWEEN 10 AND 100AND order_id BETWEEN 1500 AND 1575ORDER BY order_id, quantity DESC;

1Z0-061: Restricting and Sorting

In this statement, the first BETWEEN operator is used to retrieve rows with quantity values of 10 and 100 and all values in
between. The second BETWEEN operator is used to retrieve rows with order number values of 1500 and 1575 and all values
between. Because the default sort order is ascending (from lowest to highest for numeric data, from earliest to latest for date data, and alphabetically for character data), no keyword is necessary following the order_id column in the ORDER
BY clause. To display the quantity values in descending order (from highest to lowest) for each group of order numbers,
the DESC keyword is used.
The SELECT statement containing BETWEEN 9 AND 101 will not return the desired results because rows with a quantity
value between 10 and 100 will not be returned. The sort order of DESC on the order_id column will also cause undesired
results to display.
The SELECT statement containing (quantity > 10 AND quantity < 100) will not return the desired results because
rows with a quantity value of 10 and 100 will not be included in the result. A sort order of descending should also be placed on the quantity column in the ORDER BY clause to return the desired results.
The SELECT statement containing (quantity > 9 OR quantity < 101) will not return the desired results. Any row
with a quantity value greater than 9 or less than 101 will be returned. A sort order of descending should also be placed
on the quantity column in the ORDER BY clause to return the desired results.

1Z0-061: Restricting and Sorting

Examine the structure of the LINE_ITEM table.

You attempt to query the database with this SQL statement:
SELECT order_id "Order Number", product_id "Product", quantity "Amount"FROM line_itemWHERE "Order Number" = 5570ORDER BY "Amount";
This statement fails when executed. Which action should you take to correct the problem?

Explanation:
To correct the problem, you should remove the column alias from the WHERE clause and use the column name. A column
alias cannot be used in a WHERE clause to identify a column. To correct the problem, you should remove the column alias
from the WHERE clause and use the column name instead.
Explicitly specifying whether the sort order is ascending or descending is certainly permissible, but is never required, and therefore does not cause a syntax error. Also, the use of an alias column header is acceptable in the ORDER BY clause.
You can use the actual column name, the alias column header, or an integer representing the ordinal value of the sort column from its position in the SELECT clause.
An ORDER BY clause does not need to contain the ASC or DESC keywords. The default sort order of an ORDER BY clause is
ASC, from lowest to highest for numeric data, from earliest to latest for date data, and alphabetically for character data. The
DESC keyword is used when the reverse sort order is desired.
You should not enclose all of the column aliases in single quotes instead of double quotes. Column aliases must be enclosed in double quotes (") if they require initial capitalization or include spaces.
You should not remove the column alias from the ORDER BY clause and use the column name. A column alias can be used
to identify a column in an ORDER BY clause.

Item: 14 (Ref:1Z0-061.3.1.5)

Specify a sort order of ASC or DESC in the ORDER BY clause.
Enclose all of the column aliases in single quotes instead of double quotes.
Remove the column alias from the WHERE clause and use the column name.
Remove the column alias from the ORDER BY clause and use the column name.

Answer:
Remove the column alias from the WHERE clause and use the column name.

1Z0-061: Restricting and Sorting

Evaluate this SQL statement:
SELECT l.order_id, i.description, l.quantityWHERE i.id_number = l.product_idFROM inventory i, line_item lORDER BY l.order_id, i.description;
This statement fails when executed. Which change should you make to correct the problem?

Explanation:
To correct the problem, you should reorder the clauses in the statement. For this statement to execute successfully, the FROM clause must be placed before the WHERE clause. The sequence in which the clauses of a SELECT statement should
be placed is: SELECT, FROM, WHERE, GROUP BY, HAVING, and ORDER BY. When a SELECT statement clause is out of
sequence, the statement will not execute.
You should not remove the table aliases from the FROM clause to correct the problem. All of the SELECT statement clauses
are using the defined table aliases correctly.
You should not use the table names instead of the table aliases in the ORDER BY clause to correct the problem. The Oracle
Server does not require a defined table alias to be used in an ORDER BY clause.
You should not remove the table alias from the ORDER BY clause and use only the column name to correct the problem.
The statement will still generate a syntax error since the clauses would continue to be out of order.
A WHERE clause uses a condition to qualify or restrict query results by comparing values. A WHERE clause directly follows
the FROM clause and contains a condition(s) that must be met. Logical conditions may be created using the NOT, AND, and
OR operators. Comparison conditions may be created using these operators: =, >, <, >=, <=, <>, !=, [NOT]
BETWEEN...AND... , [NOT] IN, ANY, ALL, SOME, EXISTS, LIKE, and IS [NOT] NULL.

Item: 15 (Ref:1Z0-061.3.1.2)

Reorder the clauses in the statement.
Remove the table aliases from the FROM clause.
Use the table names instead of the table aliases in the ORDER BY clause.
Remove the table alias from the ORDER BY clause, and use only the column name.

Answer:
Reorder the clauses in the statement.

1Z0-061: Restricting and Sorting

Examine the data in the TEACHER table.

You want to query the TEACHER table and display the following results:
Name Subject------------------------------------- -------------------Jones, Karen HST_REVOLHopewell, Mary Elizabeth HST_RELIG
What should you use to query the TEACHER table?

Explanation:
You should use the following query to return the desired results from the teacher table:
SELECT last_name||', '||first_name "Name", subject_id "Subject" FROM teacherWHERE subject_id LIKE 'HST_R%' ESCAPE '\';
When using the LIKE operator, you can use the ESCAPE option to use the percent (%) and underscore (_) characters as
literals. Otherwise, they are interpreted as special pattern-matching characters. The ESCAPE option is used to identify the
escape character. If the escape character appears in the pattern before the characters % or _, Oracle interprets the
character literally in the pattern, rather than as a special pattern-matching character. The ESCAPE option identifies the
backslash (\) as the escape character in this scenario. In the pattern HST_R%, the escape character precedes the
underscore (_). This causes Oracle to interpret the underscore (_) literally.

Item: 16 (Ref:1Z0-061.3.1.6)

SELECT last_name||', '||first_name "Name", subject_id "Subject"FROM teacherWHERE subject_id = 'HST_R%';
SELECT last_name||', '||first_name "Name", subject_id "Subject"FROM teacherWHERE subject_id LIKE 'HST_%';
SELECT last_name||', '||first_name "Name", subject_id "Subject"FROM teacherWHERE subject_id LIKE '%HST_R%' ESC '\';
SELECT last_name||', '||first_name "Name", subject_id "Subject"
FROM teacherWHERE subject_id LIKE 'HST_R%' ESCAPE '\';

Answer:
SELECT last_name||', '||first_name "Name", subject_id "Subject"
FROM teacherWHERE subject_id LIKE 'HST_R%' ESCAPE '\';

1Z0-061: Restricting and Sorting

You should not use the query containing WHERE subject_id = 'HST_R%' as the WHERE clause condition. This query
executes successfully, but does not return the desired rows. Because the equality operator was used, only rows that had a subject_id of HST_R% would be returned. This is because the wildcard characters are only meaningful if the operator is
LIKE or NOT LIKE.
You should not use the query containing WHERE subject_id LIKE 'HST_%' as the WHERE clause condition. This query
executes successfully, but does not return the desired results because all of the rows in the teacher table are returned.
You should not use the query containing WHERE subject_id LIKE '%HST_R%' ESC '\' as the WHERE clause
condition. This query fails because the ESCAPE keyword may not be abbreviated.

1Z0-061: Restricting and Sorting

Which SELECT statement should you use to limit the display of account information to those accounts with a finance charge
greater than $75.00?

Explanation:
You should use the following SELECT statement to limit the display of account information to those accounts with a finance
charge greater than $75.00:
SELECT account_id, new_balance, finance_chargeFROM accountWHERE finance_charge > 75.00;
A WHERE clause is used to restrict the rows returned by a query, and consists of the WHERE keyword followed by a
condition. A condition may be composed of column names, expressions, constants, comparison operators, and logical operators. The WHERE finance_charge > 75.00 clause of the SELECT statement limits the display of account
information to those accounts with a finance charge greater than 75.00.
You should not use the SELECT statement that includes a HAVING clause because this statement will fail. A HAVING clause
is used to further restrict the groups of rows displayed after grouping has occurred with a GROUP BY clause. If you include a
HAVING clause, the query must also contain a GROUP BY clause or the statement fails.
The statements containing the improper use of the GROUP BY clause fail to execute. In the GROUP BY price > 75.00
clause, the GROUP BY clause is improperly used in the place of a WHERE clause. If GROUP BY were replaced with WHERE,
this statement would return the desired results. The statement containing GROUP BY finance_charge fails because the
GROUP BY clause is used without a grouping function in the SELECT statement. A GROUP BY clause is correctly used to
divide query result rows into smaller groups.

Item: 17 (Ref:1Z0-061.3.1.7)

SELECT account_id, new_balance, finance_chargeFROM accountWHERE finance_charge > 75.00;
SELECT account_id, new_balance, finance_chargeFROM accountHAVING finance_charge > 75.00;
SELECT account_id, new_balance, finance_chargeFROM accountWHERE finance_charge > 75.00GROUP BY finance_charge;
SELECT account_id, new_balance, finance_chargeFROM accountGROUP BY finance_charge > 75.00;

Answer:
SELECT account_id, new_balance, finance_chargeFROM accountWHERE finance_charge > 75.00;

1Z0-061: Restricting and Sorting

You query the database with this SQL statement:
SELECT bonusFROM salaryWHERE bonus BETWEEN 1 AND 250OR (bonus IN(190, 500, 600)AND bonus BETWEEN 250 AND 500);
Which bonus value could the statement return?

Explanation:
The only listed bonus value that this SELECT statement could return is 100. The first condition in the WHERE clause, WHERE
bonus BETWEEN 1 AND 250, returns rows with bonus values between 1 and 250 inclusive. In the second and third
conditions in the WHERE clause, the combination of the two clauses allows only a value of 500 to be returned. The OR
operator joining the two clauses allows either a value between 1 and 250 or a value of 500 to be returned. The value of 100 is the only value that meets these criteria.
The BETWEEN condition has precedence over the AND and OR conditions. The AND condition has precedence over the OR
condition. Conditions with higher precedence are evaluated first.
All of the other options are incorrect because these values could not be returned by the given statement.

Item: 18 (Ref:1Z0-061.3.1.10)

100
260
400
600

Answer:
100

1Z0-061: Restricting and Sorting

Examine the data in the LINE_ITEM table.

Evaluate this SQL statement:
SELECT product_id, quantityFROM line_itemWHERE quantity BETWEEN 5 AND 30ORDER BY order_id, line_item_id;
Which product_id value would be displayed last?

Explanation:
The product_id value of A-7849 would be displayed last. Using the BETWEEN operator in the given SQL statement
displays all the identification numbers for products that have a quantity of 5, 30, or any quantity between 5 and 30. The product identification numbers are displayed by order_id in ascending order, and within order_id by line_item_id in
ascending order. The default sort order when using an ORDER BY clause is ascending (lowest to highest for numeric data,
earliest to latest for date data, and alphabetically for character data). Because this is the default sort order, no sort order keyword, ASC or DESC, is required.
The value Z-79 would be the first product_id returned if the ORDER BY were on quantity.
The value C-555 would not be returned from this query because the quantity associated with it does not fall within the
WHERE clause criteria.
The value A-2356 is the first product_id value displayed.

Item: 19 (Ref:1Z0-061.3.2.6)

Z-79
C-555
A-7849
A-2356

Answer:
A-7849

1Z0-061: Restricting and Sorting

1Z0-061: Restricting and Sorting

1Z0-061: Restricting and Sorting

