
Examine the structures of the patient, physician, and admission tables.

Which SQL statement will produce a list of all patients who have more than one physician?

Explanation:
The following SQL statement will produce the list of all patients who have more than one physician:

Item: 1 (Ref:1Z0-061.7.2.1)

SELECT p.patient_idFROM patient pWHERE p.patient_id IN (SELECT patient_idFROM admissionGROUP BY patient_idHAVING COUNT(*) > 1);
SELECT DISTINCT a.patient_idFROM admission a, admission a2WHERE a.patient_id = a2.patient_idAND a.physician_id <> a2.physician_id;
SELECT patient_idFROM admissionWHERE COUNT(physician_id) > 1;
SELECT patient_idFROM patient FULL OUTER JOIN physician;

Answer:
SELECT DISTINCT a.patient_idFROM admission a, admission a2WHERE a.patient_id = a2.patient_idAND a.physician_id <> a2.physician_id;

1Z0-061: Joins

SELECT DISTINCT a.patient_idFROM admission a, admission a2WHERE a.patient_id = a2.patient_idAND a.physician_id <> a2.physician_id;
The equal (=) condition in the WHERE clause matches each patient with itself, and the not equal (<>) condition restricts the results to
only those rows where the physicians are different. This results in a list of patients with more than one physician. However, duplicates are included. Using the DISTINCT keyword eliminates these duplicates.
The statement that uses a subquery in the WHERE clause is incorrect. In this statement, the inner query executes first and returns all
patients who have been admitted more than once. The outer query then returns all patients who have been admitted more than once. A patient might have been admitted more than one time, but with the same physician. Therefore, this query does not accurately return all patients with more than one physician.
The statement that includes the COUNT function in the WHERE clause is incorrect and will generate an error because aggregate
functions cannot be used in a WHERE clause.
The statement that implements a full outer join is incorrect. Full outer joins join tables based on a common value, but include null values from both of the joined tables. In this scenario, the patient and physician tables have no common column, and no ON
clause was specified for the join. Therefore, an error will result.

1Z0-061: Joins

Examine the data from the po_header and po_detail tables.

You need to produce a report to identify any po_header rows that have no matching po_detail rows and any po_detail rows
that have no matching po_header record.
Which SELECT statement should you execute?

Explanation:
You should use the following query to produce the desired report:
SELECT h.po_num, d.po_num, d.po_line_id

Item: 2 (Ref:1Z0-061.7.3.4)

SELECT h.po_num, d.po_num, d.po_line_idFROM po_header h FULL OUTER JOIN po_detail dON (h.po_num = d.po_num)WHERE h.po_num IS NULL OR d.po_line_id IS NULL;
SELECT h.po_num, d.po_num, d.po_line_idFROM po_header h LEFT OUTER JOIN po_detail dON (h.po_num = d.po_num)WHERE d.po_num IS NULL;
SELECT h.po_num, d.po_num, d.po_line_idFROM po_header h FULL OUTER JOIN po_detail dON (h.po_num = d.po_num)WHERE h.po_num IS NULL AND d.po_line_id IS NULL;
SELECT h.po_num, d.po_num, d.po_line_idFROM po_header h RIGHT OUTER JOIN po_detail dON (h.po_num = d.po_num)WHERE h.po_num IS NULL;

Answer:
SELECT h.po_num, d.po_num, d.po_line_idFROM po_header h FULL OUTER JOIN po_detail dON (h.po_num = d.po_num)WHERE h.po_num IS NULL OR d.po_line_id IS NULL;

1Z0-061: Joins

FROM po_header h FULL OUTER JOIN po_detail dON (h.po_num = d.po_num)WHERE h.po_num IS NULL OR d.po_line_id IS NULL;
In this report, you want to join the two tables, but retrieve only the unmatched rows from both tables. A full outer join will retrieve all matching rows and all unmatched rows from both tables. To eliminate the matching rows, you can exclude po_header rows that
have matching lines using the condition d.po_line_id IS NULL and the po_detail rows that have matching headers using the
condition h.po_num IS NULL. These two conditions would need to be joined using an OR logical operator to ensure you retrieve
the desired rows.
The SELECT statement that implements a left outer join is incorrect because it only returns po_header rows that do not have
matching po_detail rows.
The SELECT statement that implements a full outer join but uses the AND logical operator in the WHERE clause condition is incorrect
because it will return no rows. The rows desired will meet one of these conditions, but not both of them.
The SELECT statement that implements a right outer join is incorrect because it only returns po_detail rows that do not have
matching po_header rows.

1Z0-061: Joins

Click the Exhibit(s) button to examine the structures of the PATIENT, PHYSICIAN, and ADMISSION tables.
You want to create a report containing the patient name, physician name, and admission date for all admissions.
Which two SELECT statements could you use? (Choose two. Each correct answer is a separate solution.)

Item: 3 (Ref:1Z0-061.7.1.1)

SELECT x.last_name || ', ' || x.first_name as "Patient Name",y.last_name || ', ' || y.first_name as "Physician Name",z.admit_dateFROM patient x, physician y, admission zWHERE x.patient_id = z.patient_id AND y.physician_id = z.physician_id;
SELECT x.last_name || ', ' || x.first_name as "Patient Name",y.last_name || ', ' || y.first_name as "Physician Name",z.admit_dateFROM patient x JOIN physician y ON (x.patient_id = z.patient_id)JOIN admission zON (y.physician_id = z.physician_id);
SELECT x.last_name || ', ' || x.first_name as "Patient Name",y.last_name || ', ' || y.first_name as "Physician Name",z.admit_dateFROM patient x JOIN admission z ON (x.patient_id = z.patient_id)JOIN physician yON (y.physician_id = z.physician_id);
SELECT last_name || ', ' || first_name as "Patient Name",last_name || ', ' || first_name as "Physician Name",admit_dateFROM patient NATURAL JOIN admission NATURAL JOIN physician;

Answer:
SELECT x.last_name || ', ' || x.first_name as "Patient Name",y.last_name || ', ' || y.first_name as "Physician Name",z.admit_dateFROM patient x, physician y, admission zWHERE x.patient_id = z.patient_id AND y.physician_id = z.physician_id;
SELECT x.last_name || ', ' || x.first_name as "Patient Name",y.last_name || ', ' || y.first_name as "Physician Name",z.admit_dateFROM patient x JOIN admission z ON (x.patient_id = z.patient_id)JOIN physician yON (y.physician_id = z.physician_id);

1Z0-061: Joins

Explanation:
To create a report containing the patient name, physician name, and admission date, you must join all three tables using equijoins. When joining two or more tables using equijoins, you can use standard Oracle syntax by including the join condition in the WHERE
clause, or you can use SQL: 1999 syntax using a JOIN...ON, a JOIN...USING, or a NATURAL JOIN. In the given scenario, you
could either use the statement that joins the three tables by specifying the join condition in the WHERE clause, or you could use the
statement that joins the three tables using the JOIN...ON syntax.
When joining more than two tables using an ON clause, the joins are evaluated from left to right. Additionally, a column cannot be
referenced until after the column's table has been specified. Therefore, the correct statement using the JOIN...ON syntax must join
the PATIENT and ADMISSION tables first, and then join the PHYSICIAN table.
The option that uses the JOIN...ON syntax but joins the PATIENT and PHYSICIAN tables first is incorrect because the ON clauses
do not correspond with the appropriate join.
The option that joins the tables using natural joins is incorrect. Natural joins join tables based on all columns in the two tables that have the same name. Because the PATIENT and PHYSICIAN tables both contain columns named FIRST_NAME and last_name, a
natural join would join the two tables based on both of these columns and would only return patients and physicians who had the same name.
The following statement would create the same result with a USING clause:
SELECT x.last_name || ', ' || x.first_name as "Patient Name",y.last_name || ', ' || y.first_name as "Physician Name",z.admit_dateFROM patient x JOIN admission z USING(patient_id)JOIN physician yUSING (physician_id);

1Z0-061: Joins

Examine the structures of the product and style tables:
product-------------------------------PRODUCT_ID NUMBERPRODUCT_NAME VARCHAR2(25)SUPPLIER_ID NUMBERQTY_IN_STOCK NUMBERQTY_ON_ORDER NUMBERREORDER_LEVEL NUMBER
style-------------------------------STYLE_ID NUMBERNAME VARCHAR2(15)COLOR VARCHAR2(10)
You want to create a report displaying all possible product_id and style_id combinations.
Which three queries could you use? (Choose three.)

Explanation:
To produce the report containing all possible combinations of product_id and style_id, you could use either the SELECT
statement that implements a CROSS JOIN with no ON clause, the SELECT statement listing only the table names with no WHERE
clause, or the statement that implements a NATURAL JOIN. Each of these statements will create an intentional Cartesian product,
joining all rows in the product table to all rows in the style table. This will produce a report containing all possible combinations of
product_id and style_id as you desired.
At first glance it may seem that the statement that implements a NATURAL JOIN would generate an error. A NATURAL JOIN joins

Item: 4 (Ref:1Z0-061.7.1.3)

SELECT style_id, product_idFROM product CROSS JOIN styleON (style_id = product_id);
SELECT style_id, product_idFROM product CROSS JOIN style;
SELECT style_id, product_idFROM styleJOIN productON style_id = product_id;
SELECT style_id, product_idFROM productNATURAL JOIN style;
SELECT style_id, product_idFROM styleJOIN productUSING (style_id);
SELECT style_id, product_idFROM style, product;

Answer:
SELECT style_id, product_idFROM product CROSS JOIN style;
SELECT style_id, product_idFROM productNATURAL JOIN style;
SELECT style_id, product_idFROM style, product;

1Z0-061: Joins

the two tables using all columns with the same name. But because these two tables have no columns with the same name, a cross product is produced.
The SELECT statement that implements a CROSS JOIN including an ON clause is incorrect. The product and style tables have
no common column. Therefore, using an ON clause will generate an error.
The statement that uses a simple join including the ON clause is incorrect because the style_id column and the product_id
column are used to join these tables. All rows whose style_id match a product_id would be included, and this is not what you
desired.
The statement that implements a simple join with a USING clause is incorrect. A USING clause is used to join two tables on a column
with the same name, and these two tables have no common column named style_id. When this statement executes, an ORA-
00904: invalid column name error occurs.
SQL statements creating Cartesian products should be used with caution because, depending on the number of rows in each of the joined tables, the result set may contain an excessive number of rows. Cartesian products have few useful applications, but are often used to automatically generate a reasonable sample of test data.

1Z0-061: Joins

Examine the data from the class and instructor tables.

You have been asked to produce a report of all instructors, including the classes taught by each instructor. All instructors must be included on the report, even if they are not currently assigned to teach classes.
Which two SELECT statements could you use? (Choose two. Each correct answer is a separate solution.)

Item: 5 (Ref:1Z0-061.7.3.1)

SELECT i.last_name, i.first_name, c.class_nameFROM instructor i, class c;
SELECT i.last_name, i.first_name, c.class_nameFROM class c LEFT OUTER JOIN instructor iON (i.instructor_id = c.instructor_id)ORDER BY i.instructor_id;
SELECT i.last_name, i.first_name, c.class_nameFROM instructor i, class cWHERE i.instructor_id = c.instructor_id (+)ORDER BY i.instructor_id;
SELECT i.last_name, i.first_name, c.class_nameFROM instructor i LEFT OUTER JOIN class cON (i.instructor_id = c.instructor_id)ORDER BY i.instructor_id;
SELECT i.last_name, i.first_name, c.class_nameFROM instructor i, class cWHERE i.instructor_id (+) = c.instructor_id ORDER BY i.instructor_id;
SELECT i.last_name, i.first_name, c.class_nameFROM instructor i NATURAL JOIN class cON (i.instructor_id = c.instructor_id);

Answer:
SELECT i.last_name, i.first_name, c.class_nameFROM instructor i, class cWHERE i.instructor_id = c.instructor_id (+)ORDER BY i.instructor_id;
SELECT i.last_name, i.first_name, c.class_nameFROM instructor i LEFT OUTER JOIN class cON (i.instructor_id = c.instructor_id)ORDER BY i.instructor_id;

1Z0-061: Joins

Explanation:
To produce the desired report, you must use an outer join condition to include all instructors from the instructor table, even if
they have no corresponding classes in the class table. To create an outer join, either Oracle proprietary syntax or SQL: 1999
syntax can be used. To produce the needed report, you could use either of these approaches:

l the SELECT statement that implements an outer join in the WHERE clause with WHERE i.instructor_id =
c.instructor_id (+)

l the SELECT statement that implements a left outer join with FROM instructor i LEFT OUTER JOIN class c
The statement that implements a simple join but does not include either a WHERE clause or an ON clause is incorrect. Because no
join condition is specified, all rows in the instructor table will be joined with all rows in the class table. This creates a Cartesian
product and is not what you desired.
The statement that uses a LEFT OUTER JOIN but lists the class table first is incorrect. Because the class table is listed to the
left of the join, all rows in the class table are retrieved, even if there is no match in the instructor table. This is exactly opposite
of what you needed.
The option that uses Oracle proprietary syntax with WHERE i.instructor_id (+) = c.instructor_id as the join condition
is also incorrect because the outer join operator is on the wrong side of the join condition.
The option that implements a natural join and includes an ON clause is incorrect. This statement will generate an error because
neither an ON nor a USING clause can be used with the NATURAL JOIN syntax.

1Z0-061: Joins

Examine the structures of the PLAYER and TEAM tables:
PLAYER-------------PLAYER_ID NUMBER(9) PKLAST_NAME VARCHAR2(25)FIRST_NAME VARCHAR2(25)TEAM_ID NUMBERMANAGER_ID NUMBER(9)
TEAM----------TEAM_ID NUMBER PKTEAM_NAME VARCHAR2(30)
For this example, team managers are also players, and the MANAGER_ID column references the PLAYER_ID column. For players
who are managers, MANAGER_ID is NULL.
Which SELECT statement will provide a list of all players, including the player's name, the team name, and the player's manager's
name?

Explanation:
The following SELECT statement will provide the needed list:
SELECT p.last_name, p.first_name, m.last_name, m.first_name, t.team_name FROM player p LEFT OUTER JOIN player m ON (p.manager_id = m.player_id) LEFT OUTER JOIN team t ON (p.team_id = t.team_id);
This statement joins the table to itself using FROM player p LEFT OUTER JOIN player m ON (p.manager_id =
m.player_id) and joins this result to the team table using LEFT OUTER JOIN team t ON (p.team_id = t.team_id).

Item: 6 (Ref:1Z0-061.7.2.2)

SELECT p.last_name, p.first_name, p.manager_id, t.team_name
FROM player p NATURAL JOIN team t;
SELECT p.last_name, p.first_name, p.manager_id, t.team_name
FROM player p JOIN team t USING (team_id);
SELECT p.last_name, p.first_name, m.last_name, m.first_name, t.team_name
FROM player p LEFT OUTER JOIN player m ON (p.manager_id = m.player_id) LEFT OUTER JOIN team t ON (p.team_id = t.team_id);
SELECT p.last_name, p.first_name, m.last_name, m.first_name, t.team_name
FROM player p JOIN player mON (p.manager_id = m.player_id)RIGHT OUTER JOIN team t ON (p.team_id = t.team_id);
SELECT p.last_name, p.first_name, m.last_name, m.first_name, t.team_name
FROM player p LEFT OUTER JOIN player m ON (p.player_id = m.player_id) LEFT OUTER JOIN team t ON (p.team_id = t.team_id);

Answer:
SELECT p.last_name, p.first_name, m.last_name, m.first_name, t.team_name
FROM player p LEFT OUTER JOIN player m ON (p.manager_id = m.player_id) LEFT OUTER JOIN team t ON (p.team_id = t.team_id);

1Z0-061: Joins

Both of the SELECT statements that return only the manager_id and not the manager's name are incorrect because you wanted
the list to include the manager's name.
The SELECT statement that implements a right outer join is incorrect. This statement will first join the player table to itself using an
equijoin. This will only include players that have a manager assigned. The team managers would not be included in the list. In addition, it then performs a RIGHT OUTER JOIN with the team table. This will include any teams that do not have players in the list.

The SELECT statement that includes two left outer joins but uses p.player_id = m.player_id as the self join condition is
incorrect because this joins the player table to itself using only the player_id column. To create the needed self join condition,
you must create the relationship from the player_id column to the manager_id column.

1Z0-061: Joins

Click the Exhibit(s) button to examine the structures of the EMPLOYEE, PROJECT, and TASK tables.
You want to create a report of all employees, including employee name and project name, who are assigned to project tasks. You want to include all projects even if they currently have no tasks defined, and you want to include all tasks, even those not assigned to an employee.
Which joins should you use?

Item: 7 (Ref:1Z0-061.7.3.2)

a self join on the EMPLOYEE table and a left outer join between the TASK and PROJECT tables
a natural join between the TASK and EMPLOYEE tables and a natural join between the TASK and PROJECT tables
a full outer join between the TASK and EMPLOYEE tables and a natural join between the TASK and PROJECT tables
a natural join between the TASK and EMPLOYEE tables and a left outer join between the TASK and PROJECT tables
a full outer join between the TASK and EMPLOYEE tables and a full outer join between the TASK and PROJECT tables
a left outer join between the TASK and EMPLOYEE tables and a right outer join between the TASK and PROJECT tables

Answer:
a left outer join between the TASK and EMPLOYEE tables and a right outer join between the TASK and
PROJECT tables

1Z0-061: Joins

Explanation:
To produce the desired results, you should use a left outer join between the TASK and EMPLOYEE tables and a right outer join
between the TASK and PROJECT tables. An example of this operation would be:
SELECT p.project_name, t.task_id, e.employee_idFROM task t LEFT OUTER JOIN employee eON (t.employee_id = e.employee_id)RIGHT OUTER JOIN project pON (t.project_id = p.project_id);
The first join in the SELECT statement will be evaluated first. The TASK and EMPLOYEE tables will be joined, with all rows from the
task table being included, even if they have no employees assigned. Then, the next join will be evaluated. This joins the result of the first join to the PROJECT table with all projects being included regardless of whether the project has associated tasks. The result will
be the desired list.
The option that states you would use a self join is incorrect because you do not need to relate the EMPLOYEE table to itself.
All of the options stating you would use a natural join are incorrect. Natural joins perform equijoins, which will not include unmatched rows.
The option stating that you would use two full outer joins is incorrect. If a full outer join were used to join the TASK and EMPLOYEE
tables, all employees would be included, even if they were not assigned to any tasks. You only wanted to return employees that were assigned project tasks.

1Z0-061: Joins

Click the Exhibit(s) button to examine the structures of the EMPLOYEE and TASK tables.
You need to produce a report containing all employees and all tasks. An employee must be included on the report even if he has no tasks assigned. All tasks, whether assigned to an employee or not, must also be included on the report.
Which SELECT statement should you use?

Explanation:
For the given scenario, none of the options will produce the desired result. Because you needed to include all rows from both tables, a full outer join must be used, and none of the given options correctly implements a full outer join.
Outer joins may be created in one of two ways. You can either create a full outer join using the SQL: 1999 syntax, or you can use the FULL OUTER JOIN syntax as in this SELECT statement:
SELECT e.emp_lname, e.emp_fname, t.task_description, t.est_compl_dateFROM employee e FULL OUTER JOIN task tON (e.employee_id = t.employee_id);
Using Oracle proprietary syntax, you cannot include the outer join operator (+) on both sides of the join condition. To implement an

Item: 8 (Ref:1Z0-061.7.3.3)

SELECT e.emp_lname, e.emp_fname, t.task_description, t.est_compl_dateFROM employee e, task tWHERE e.employee_id = t.employee_id;
SELECT e.emp_lname, e.emp_fname, t.task_description, t.est_compl_dateFROM employee e, task tWHERE e.employee_id (+) = t.employee_id;
SELECT e.emp_lname, e.emp_fname, t.task_description, t.est_compl_dateFROM employee e, task tWHERE e.employee_id = t.employee_id (+);
SELECT e.emp_lname, e.emp_fname, t.task_description, t.est_compl_dateFROM employee e, task tWHERE e.employee_id (+) = t.employee_id (+);
None of the options will produce the desired result.

Answer:
None of the options will produce the desired result.

1Z0-061: Joins

outer join you must use two SELECT statements, one performing a left outer join and the other performing a right outer join, and
combine the results of these SELECT statements using the UNION operator, as shown in the following example:
SELECT e.emp_lname, e.emp_fname, t.task_description, t.est_compl_dateFROM employee e, task tWHERE e.employee_id (+) = t.employee_idUNIONSELECT e.emp_lname, e.emp_fname, t.task_description, t.est_compl_dateFROM employee e, task tWHERE e.employee_id = t.employee_id (+);
The option including WHERE e.employee_id = t.employee_id as the join condition is incorrect because this implements an
equijoin, or inner join, and will only return matching rows from the two tables.
Both of the options that use the outer join operator on one side of the join condition are incorrect. Neither would return unmatched rows from both tables.
The option that includes the outer join operator on both sides of the join condition is also incorrect because it is not valid to use the outer join operator on both sides of a join condition.

1Z0-061: Joins

Examine the structures of the product and supplier tables:
product-----------------------------------PRODUCT_ID NUMBERPRODUCT_NAME VARCHAR2(25)SUPPLIER_ID NUMBERCATEGORY_ID NUMBERQTY_PER_UNIT NUMBERUNIT_PRICE NUMBER(7,2)QTY_IN_STOCK NUMBERQTY_ON_ORDER NUMBERREORDER_LEVEL NUMBER
supplier------------------------------------SUPPLIER_ID NUMBERSUPPLIER_NAME VARCHAR2(25)ADDRESS VARCHAR2(30)CITY VARCHAR2(25)REGION VARCHAR2(10)POSTAL_CODE VARCHAR2(11)
You want to create a query that will return an alphabetical list of products including the name of each product's supplier. Only products in the product table that have a supplier assigned should be included in your report.
Which two queries could you use? (Choose two. Each correct answer is a separate solution.)

Item: 9 (Ref:1Z0-061.7.1.2)

SELECT p.product_name, s.supplier_nameFROM product pLEFT OUTER JOIN supplier sON p.supplier_id = s.supplier_idORDER BY p.product_name;
SELECT p.product_name, s.supplier_nameFROM product pJOIN supplier sON (supplier_id)ORDER BY p.product_name;
SELECT product_name, supplier_nameFROM productNATURAL JOIN supplierORDER BY product_name;
SELECT p.product_name, s.supplier_nameFROM product pJOIN supplier sUSING (p.supplier_id)ORDER BY p.product_name;
SELECT product_name, supplier_nameFROM productJOIN supplierUSING (supplier_id)ORDER BY product_name;

Answer:
SELECT product_name, supplier_nameFROM productNATURAL JOIN supplierORDER BY product_name;
SELECT product_name, supplier_nameFROM productJOIN supplierUSING (supplier_id)ORDER BY product_name;

1Z0-061: Joins

Explanation:
To produce the needed list of products, you should join the product and supplier tables using an equijoin. An equijoin joins two
tables by a column that contains a matching value. Several methods exist for performing equijoins. In this situation, you could use one of two statements:

l a statement that implements a natural join
l a statement that implements a simple join containing a USING clause with no table alias

Natural joins join two tables by all columns with the same name. Because the supplier_id column is the only column with the
same name in both tables, a natural join will perform an equijoin based on this column. The USING clause creates an equijoin by
specifying a column name (or column names) common to both tables and, in this scenario, will perform an equijoin of the two tables using the supplier_id columns from each table.
Outer joins join two tables on a matching column, but include unmatched rows from one or both of the joined tables. The statement implementing a left outer join would include all rows from the product table and matching rows from the supplier table. Because
you only wanted to include products that were assigned a supplier, the statement that implements the left outer join is incorrect.
The option that implements a simple join with an ON clause is incorrect. The ON clause can be used to produce an equijoin, but this
statement contains incorrect syntax for the ON clause. When using the ON clause to produce an equijoin, the join condition should be
specified with a traditional join predicate, not a single column reference.
A correct implementation of an equijoin containing the ON clause would be:
SELECT p.product_name, s.supplier_nameFROM product p JOIN supplier sON (p.supplier_id = s.supplier_id);
The option that implements a simple join containing a USING clause with a table alias is incorrect. Although a USING clause can be
used to create an equijoin condition when two tables have a commonly named column, columns referenced in a USING clause
should not have a table alias specified anywhere throughout the SQL statement. An ORA-01748: only simple column names
allowed here error will occur. A correct implementation of an equijoin containing the USING clause would be:
SELECT p.product_name, s.supplier_nameFROM product p JOIN supplier sUSING (supplier_id);
When joining tables that contain more than one column with a common name, a natural join will join the two tables based on all commonly named columns. A USING clause can be used when you want to perform a natural join but limit the columns for the join
condition.

1Z0-061: Joins

Examine the structures of the CUSTOMER and ORDER tables.

You want to create a report showing each customer and all orders placed by that customer. Specifically, you want your report to contain the columns custid, custname, and custcreditlimit from the CUSTOMER table as well as the columns ordid,
orddate, and ordamount from the ORDER table. The output should be limited to customers who are located in Dallas, and should
omit customers who have never placed an order.
You issue the following SELECT statement to accomplish this:
SELECT c.custid, c.custname, c.custcreditlimit, o.ordid, o.orddate, o.ordamount FROM CUSTOMER c, ORDER oWHERE UPPER(c.custlocation) = 'DALLAS'
Which of the following statements is true regarding the results of this statement?

Explanation:
The SELECT statement listed will execute; however, it will return each customer in Dallas from the CUSTOMER table matched with
every order in the ORDER table, as well as each order in the ORDER table matched with every Dallas-based customer in the

Item: 10 (Ref:1Z0-061.7.4.1)

The SELECT statement will return the results required by the scenario.
The SELECT statement will only return customer rows if the data in the custlocation column of the CUSTOMER table is
stored in all caps.
The SELECT statement will fail because the location from the CUSTOMER table is referenced in the WHERE clause but it never
appears in the SELECT clause.
The SELECT statement will return each customer in Dallas from the CUSTOMER table matched with every order in the ORDER
table, as well as each order in the ORDER table matched with every Dallas-based customer in the CUSTOMER table.
The SELECT statement will fail because there is no qualifier specifying the name of the table containing the column called
custlocation.

Answer:
The SELECT statement will return each customer in Dallas from the CUSTOMER table matched
with every order in the ORDER table, as well as each order in the ORDER table matched with
every Dallas-based customer in the CUSTOMER table.

1Z0-061: Joins

CUSTOMER table. The reason for this is the absence of a WHERE clause which links together the parent (the custid in the
CUSTOMER table) and child (the ordcustid in the ORDER table). Without that condition in the WHERE clause, the results will be a
Cartesian cross product which joins each row from the first table with every one of the rows in the second table, and each row from the second table with every one of the rows in the first table.
The SELECT statement will not return the results as specified in the scenario since the expectation was that the only orders which
would appear for a given customer are the orders which were placed by that customer.
It is not a requirement that the location must be inserted into the customer table in all capital letters. The SELECT will take the name
as it appears in the database column, convert it into all caps, and then make the comparison to see if it is equal to DALLAS. This
logic is performing correctly.
Even though one of the conditions of the WHERE clause references the column called custlocation, it is not necessary that that
column also appear in the list of column names in the SELECT clause.
Since the column in the WHERE clause called custlocation only appears in the CUSTOMER table and not the ORDER table, and
since those are the only two tables in the FROM clause (the only two tables being joined), then Oracle is able to deal with the
unqualified name since there is no possibility of ambiguity in this case.

1Z0-061: Joins

Click the Exhibit(s) button to examine the structures of the donor, donation, and donor_level tables.
You want to produce a report of all donors, including each donor's giving level. The donor level should be determined based on the amount pledged by the donor.
Which SELECT statement will join these three tables and implements a non-equijoin?

Explanation:

Item: 11 (Ref:1Z0-061.7.1.4)

SELECT d.donor_name, dl.level_descriptionFROM donor d, donor_level dlWHERE amount_pledged BETWEEN dl.min_donation AND dl.max_donation;
SELECT d.donor_name, dl.level_descriptionFROM donor d JOIN donation dnUSING (donor_id) JOIN donor_level dlON (dn.amount_pledged BETWEEN dl.min_donation AND dl.max_donation);
SELECT d.donor_name, dl.level_descriptionFROM donor d, donation dn, donor_level dlWHERE dn.amount_pledged BETWEEN dl.min_donation AND dl.max_donation;
SELECT d.donor_name, dl.level_descriptionFROM donor d JOIN donation dn JOIN donor_level dlON (donor_id) ANDON (dn.amount_pledged BETWEEN dl.min_donation AND dl.max_donation);
This join cannot be accomplished because the donor_level and donation tables have no common column.

Answer:
SELECT d.donor_name, dl.level_descriptionFROM donor d JOIN donation dnUSING (donor_id) JOIN donor_level dlON (dn.amount_pledged BETWEEN dl.min_donation AND dl.max_donation);

1Z0-061: Joins

The following SELECT statement will join the three tables and implements a non-equijoin:
SELECT d.donor_name, dl.level_descriptionFROM donor d JOIN donation dnUSING (donor_id) JOIN donor_level dlON (dn.amount_pledged BETWEEN dl.min_donation AND dl.max_donation);
A non-equijoin is represented by the use of an operator other than an equality operator (=). A non-equijoin is used when no corresponding columns exist between the tables in the query, but rather a relationship exists between two columns having compatible data types. Several conditions can be used to define a non-equijoin, including <, <=, >, >=, BETWEEN, and IN. In the
given scenario, a non-equijoin relationship exists between the amount_pledged column of the donation table and the
min_donation and max_donation columns of the donor_level table. In addition, an equijoin relationship exists between the
donor_id column of the donation table and the donor_id column of the donor table. To produce the report of all donors with
their corresponding giving levels, you should use the SELECT statement that contains an ON clause and a USING clause. First, this
statement joins the donor and donation tables using the commonly named column donor_id. Then, this result is joined with the
donor levels based on a non-equijoin condition in the ON clause, namely ON (dn.amount_pledged BETWEEN
dl.min_donation AND dl.max_donation).
The SELECT statement that only includes the donor and donor_level tables in the FROM clause is incorrect. The donation table
must be included in the relationship because it contains the amount_pledged column.
The SELECT statement that uses traditional Oracle syntax to implement the join in the WHERE clause but only includes one WHERE
clause condition, WHERE dn.amount_pledged BETWEEN dl.min_donation AND dl.max_donation, is also incorrect. This
join condition provides for no relationship between the donation and donor tables, and it would be impossible to associate a
donor name with each donation.
The SELECT statement that specifies two ON clauses is incorrect because it has invalid syntax. When the JOIN...ON syntax is
used, the ON clause must follow its corresponding JOIN.

1Z0-061: Joins

Evaluate this SQL statement:
SELECT c.customer_id, o.order_id, o.order_date, p.product_nameFROM customer c, curr_order o, product pWHERE customer.customer_id = curr_order.customer_idAND o.product_id = p.product_idORDER BY o.order_amount;
This statement fails when executed.
Which change will correct the problem?

Explanation:
To correct the problem with this SELECT statement, you should use the table aliases instead of the table names in the WHERE
clause. Table aliases are specified for all tables in the FROM clause of this SELECT statement. After they have been defined, these
table aliases must be used. The first join predicate in the WHERE clause uses the full table name to qualify each column, and this will
result in an error.
The ORDER BY clause uses the table alias correctly. Therefore, the option stating you should use the table name in the ORDER BY
clause is incorrect.
You should not remove the table aliases from the WHERE clause, but rather use aliases throughout.
The order_amount column does not need to be included in the SELECT list. A column not included in the SELECT list can be used
for ordering.
If no columns had identical names in both tables, you could remove the table alias from the ORDER BY clause and use only the
column name. However, this would not correct the error in this SQL statement.
While special rules exist for using table aliases, both with Oracle proprietary and SQL: 1999 syntax, using table aliases where possible is recommended. Using table aliases not only makes SQL statements easier to read, but also provides additional performance enhancements.

Item: 12 (Ref:1Z0-061.7.1.5)

Use the table name in the ORDER BY clause.
Remove the table aliases from the WHERE clause.
Include the order_amount column in the SELECT list.
Use the table aliases instead of the table names in the WHERE clause.
Remove the table alias from the ORDER BY clause and use only the column name.

Answer:
Use the table aliases instead of the table names in the WHERE clause.

1Z0-061: Joins

1Z0-061: Joins

