
Examine the data in the WORKORDER table.

The WORKORDER table contains these columns:
WO_ID NUMBER PKCUST_ID NUMBERREQUIRED_DT DATECOMPL_DT DATEAMOUNT NUMBER(7,2)
Which statement regarding the use of aggregate functions on the WORKORDER table is TRUE?

Explanation:
All group functions, except specifically the COUNT(*) function, ignore null values. Therefore, it is correct to state that using the
AVG aggregate function on the AMOUNT column ignores null values.
Grouping is allowed on any column, so the option stating that grouping on the REQUIRED_DT and COMPL_DT columns is not
allowed is incorrect.
The option stating you can use the AVG function with any column in the table is incorrect because you can only use the AVG,
SUM, STDDEV, and VARIANCE functions with numeric data types.
All group functions ignore null values. Therefore, the MIN aggregate function would not return a null value, and the option
stating that it does is incorrect.
The option that states that the SUM function is allowed in any portion of a SELECT statement is incorrect. Aggregate functions
cannot be used in WHERE clauses. WHERE clauses restrict the rows before the grouping occurs. HAVING clauses restrict the
rows after the grouping occurs.

Item: 1 (Ref:1Z0-061.6.3.2)

Using the AVG aggregate function with any column in the table is allowed.
Using the AVG aggregate function on the AMOUNT column ignores null values.
Using the MIN aggregate function on the COMPL_DT column will return a null value.
Using the SUM aggregate function with the AMOUNT column is allowed in any portion of a SELECT statement.
Using the SUM aggregate function on the AMOUNT column will result in erroneous results because the column contains
null values.
Grouping on the REQUIRED_DT and COMPL_DT columns is not allowed.

Answer:
Using the AVG aggregate function on the AMOUNT column ignores null values.

1Z0-061: Reporting Aggregate data

Using the SUM function on the AMOUNT column will not result in erroneous results due to null values. Aggregate functions
ignore null values.
If you need to substitute another value, for example zero, for a null value, you can use the NVL, NVL2, or COALESCE functions.

1Z0-061: Reporting Aggregate data

Which two statements about the evaluation of clauses in a SELECT statement are true? (Choose two.)

Explanation:
The Oracle Server will evaluate a WHERE clause before a GROUP BY clause. The Oracle Server will evaluate a GROUP BY
clause before a HAVING clause. The order of evaluation of clauses is:

1. WHERE clause
2. GROUP BY clause
3. HAVING clause
4. ORDER BY clause

The WHERE clause establishes the candidate rows. From these rows, the Oracle Server identifies the groups in the GROUP BY
clause. The HAVING clause further restricts the result groups. The data is then ordered based on the values in the ORDER BY
clause.
The statements indicating that the HAVING clause will be evaluated before the WHERE clause, the ORDER BY clause will be
evaluated before the WHERE clause, or the ORDER BY clause will be evaluated before the HAVING clause are incorrect.

Item: 2 (Ref:1Z0-061.6.4.1)

The Oracle Server will evaluate a HAVING clause before a WHERE clause.
The Oracle Server will evaluate a WHERE clause before a GROUP BY clause.
The Oracle Server will evaluate a GROUP BY clause before a HAVING clause.
The Oracle Server will evaluate an ORDER BY clause before a WHERE clause.
The Oracle Server will evaluate an ORDER BY clause before a HAVING clause.

Answer:
The Oracle Server will evaluate a WHERE clause before a GROUP BY clause.
The Oracle Server will evaluate a GROUP BY clause before a HAVING clause.

1Z0-061: Reporting Aggregate data

Examine the structure of the product table:

Which SELECT statement displays the number of items for which the list_price is greater than $400.00?

Explanation:
The following SELECT statement displays the number of items whose list_price is greater than $400.00:
SELECT COUNT(*)FROM productWHERE list_price > 400;
COUNT(*) returns the number of rows in a table or in a particular group or rows in a table. Because no GROUP BY clause is
provided in this statement, all rows in the table that meet the WHERE clause criteria are counted.
Both SELECT statements that use the SUM group function are incorrect. The SUM group function returns the sum of a group of
values, which is not what you desired. Additionally, SUM(*) is invalid syntax and will generate an error.
The SELECT statement that uses the COUNT group function but does not include a WHERE clause is also incorrect. To restrict
the rows counted to only those with a list price greater than $400.00, a WHERE clause would need to be included.

Item: 3 (Ref:1Z0-061.6.3.3)

SELECT SUM(*)FROM productWHERE list_price > 400;
SELECT COUNT(*)FROM productORDER BY list_price;
SELECT COUNT(*)FROM productWHERE list_price > 400;
SELECT SUM(*)FROM productGROUP BY list_price > 400;

Answer:
SELECT COUNT(*)FROM productWHERE list_price > 400;

1Z0-061: Reporting Aggregate data

Examine the structure of the product table.

Evaluate this SQL statement:
SELECT supplier_id, AVG(cost)FROM productWHERE AVG(list_price) > 60.00GROUP BY supplier_idORDER BY AVG(cost) DESC;
Which clause will cause an error?

Explanation:
The WHERE clause will cause an error when this SELECT statement is executed. Groups can only be restricted with a HAVING
clause. Including a group (or aggregate) function in a WHERE clause is invalid.
All of the other clauses are correctly specified and do not generate errors.

Item: 4 (Ref:1Z0-061.6.4.3)

SELECT
WHERE
GROUP BY
ORDER BY

Answer:
WHERE

1Z0-061: Reporting Aggregate data

The EMPLOYEE table contains these columns:
EMP_ID NUMBER(9)FNAME VARCHAR2(25)LNAME VARCHAR(30)SALARY NUMBER(7,2)BONUS NUMBER(5,2)DEPT_ID NUMBER(9)
You need to calculate the average bonus for all the employees in each department. The average should be calculated based on all the rows in the table, even if some employees do not receive a bonus.
Which group function should you use to calculate this value?

Explanation:
To calculate the average bonus, you should use the AVG function. The AVG group function can be used to calculate the
average value for a group of values.
When using AVG and other group functions, null values are ignored and not included in the group calculation. In this scenario,
you wanted to include null values, so you should also use the NVL function to force the AVG function to include null values. In
this scenario, you would use this SELECT statement to return the desired results:
SELECT AVG(NVL(bonus, 0))FROM employeeGROUP BY dept_id;
The NVL single-row function is used to convert a null to an actual value and can be used on any data type including VARCHAR2
columns. The syntax for the NVL function is:
NVL(expression1, expression2)
Although SUM, MAX, and COUNT are valid group functions, none of these functions will calculate an average for a group of
values as required in the scenario. You would use the SUM group function to total a group of values, ignoring null values. You
would use the MAX group function to return the greatest value in a group of values, ignoring null values. You would use the
COUNT group function to return the number of rows in a group while ignoring null values. The COUNT(*) clause will count all
the selected rows, including duplicates and rows with nulls.
MEAN and AVERAGE are not valid group functions. Therefore, these options are incorrect.

Item: 5 (Ref:1Z0-061.6.1.1)

AVG
SUM
MAX
MEAN
COUNT
AVERAGE

Answer:
AVG

1Z0-061: Reporting Aggregate data

Examine the structures of the employee and department tables:
employee------------------EMP_ID NUMBER NOT NULL PKNAME VARCHAR(30) NOT NULLFNAME VARCHAR(25) NOT NULLDEPT_NO NUMBERTITLE VARCHAR2(25)
department------------------------DEPT_ID NUMBER NOT NULL PKDEPT_NAME VARCHAR2(25)
You need to produce a list of departments, including the department name, which have more than three administrative assistants.
Which SELECT statement will produce the desired result?

Item: 6 (Ref:1Z0-061.6.4.2)

SELECT dept_nameFROM employee JOIN departmentON employee.dept_id = department.dept_idWHERE UPPER(title) = 'ADMINISTRATIVE ASSISTANT'GROUP BY dept_nameHAVING emp_id > 3;
SELECT dept_nameFROM employeeGROUP BY dept_noHAVING LOWER(title) = 'administrative assistant' AND COUNT(*) > 3;
SELECT dept_nameFROM employee NATURAL JOIN departmentWHERE LOWER(title) = 'administrative assistant'GROUP BY dept_nameHAVING COUNT(emp_id) > 3;
SELECT dept_nameFROM employee e JOIN department dON (e.dept_no = d.dept_id)WHERE LOWER(title) = 'administrative assistant'AND COUNT(*) > 3;
SELECT d.dept_nameFROM employee e JOIN department dON (e.dept_no = d.dept_id)WHERE LOWER(title) = 'administrative assistant'GROUP BY dept_nameHAVING COUNT(emp_id) > 3;
SELECT d.dept_nameFROM e.employee JOIN d.departmentON (e.dept_no = d.dept_id)WHERE LOWER(title) = 'administrative assistant'GROUP BY dept_nameHAVING COUNT(emp_id) > 3;

Answer:
SELECT d.dept_nameFROM employee e JOIN department dON (e.dept_no = d.dept_id)WHERE LOWER(title) = 'administrative assistant'GROUP BY dept_nameHAVING COUNT(emp_id) > 3;

1Z0-061: Reporting Aggregate data

Explanation:
The following SELECT statement will produce the desired result:
SELECT d.dept_nameFROM employee e JOIN department dON (e.dept_no = d.dept_id)WHERE LOWER(title) = 'administrative assistant'GROUP BY dept_nameHAVING COUNT(emp_id) > 3;
To produce a list of departments having more than three administrative assistants, a GROUP BY clause should be used with
the HAVING keyword. First, you want to restrict the employees to only those who are administrative assistants. You would do this using a WHERE clause to restrict the rows prior to grouping. After the rows have been restricted to only administrative
assistants, the rows can be grouped by department, and the number of rows for each department counted. To restrict the rows after grouping them, use the HAVING keyword. You should limit the result set to only those groups having more than three
rows, namely HAVING COUNT(emp_id) > 3.
The SELECT statement that uses HAVING emp_id > 3 is incorrect and will generate an error. Expressions used in a
HAVING clause must be group expressions applicable to an entire group, not expressions applicable to single rows. The
HAVING clause restricts the groups returned.
The SELECT statement that retrieves data only from the employee table will generate an error because the dept_name
column resides in the department table. To produce the desired result, the two tables must be joined.
The SELECT statement that implements a NATURAL JOIN is incorrect because these two tables have no columns with the
same name. As a result, the NATURAL JOIN will return a Cartesian product including all rows from the employee table joined
with all rows from the department table. Even though the WHERE, GROUP BY, and HAVING clauses are correct, this will skew
the results indicating that all departments have more than three administrative assistants.
The SELECT statement that includes COUNT(*) > 3 in the WHERE clause is incorrect because group functions cannot be
used in a WHERE clause.
The SELECT statement that includes FROM e.employee JOIN d.department is syntactically incorrect. The table aliases
should be specified as FROM employee e JOIN department d.

1Z0-061: Reporting Aggregate data

Examine the data from the po_detail table.

You query the po_detail table and a value of 5 is returned.
Which SQL statement did you execute?

Explanation:
You executed the following statement:
SELECT COUNT(*)FROM po_detail;
The COUNT group function returns the number of rows in a table when COUNT(*) is used without a WHERE clause. The
po_detail table contains five rows, so the SELECT statement returns a value of 5.
The SQL statement that includes SUM(quantity) in the select list is incorrect. This statement will return 270, which is the
result of adding all values of the QUANTITY column.
The SQL statement that includes AVG(unit_price) in the select list is also incorrect. This statement will return 22.48, or the
average of all five values of UNIT_PRICE.
The SQL statement that uses both the COUNT and AVG functions will return an error. Nested functions are allowed and are
evaluated from the innermost function to the outermost function. However, if group functions are nested, the statement must contain a GROUP BY clause.
The SQL statement that uses the COUNT function with the DISTINCT keyword will return a value of 3. When the DISTINCT
keyword is used with the COUNT function it will return the number of distinct non-null values of the given expression, which in

Item: 7 (Ref:1Z0-061.6.3.1)

SELECT SUM(quantity)FROM po_detail;
SELECT AVG(unit_price)FROM po_detail;
SELECT COUNT(AVG(unit_price))FROM po_detail;
SELECT COUNT(*)FROM po_detail;
SELECT COUNT(DISTINCT product_id)FROM po_detail;
SELECT COUNT(po_num, po_line_id)FROM po_detail;

Answer:
SELECT COUNT(*)FROM po_detail;

1Z0-061: Reporting Aggregate data

this case is the number of distinct non-null product_id values.
The SQL statement that includes COUNT(po_num, po_line_id) in the select list is invalid and will result in an error. The
COUNT function accepts a single column or expression as its argument.

1Z0-061: Reporting Aggregate data

Evaluate this SQL statement:
SELECT manufacturer_id, COUNT(*), order_dateFROM inventoryWHERE price > 5.00GROUP BY order_date, manufacturer_idHAVING COUNT(*) > 10ORDER BY order_date DESC;
Which clause specifies which rows will be returned from the inventory table?

Explanation:
The WHERE clause uses a condition to qualify or restrict the query results to only rows meeting the condition of PRICE >
5.00 in the inventory table.
All of the other options are incorrect because none of these clauses specifies which rows will be returned from the inventory
table. The SELECT clause is used to restrict the columns, or expressions returned from the table. The GROUP BY clause is
used to divide query result rows into smaller groups. The HAVING clause is used to further restrict which groups will be
returned. The ORDER BY clause is used to sort the rows returned.

Item: 8 (Ref:1Z0-061.6.4.4)

SELECT manufacturer_id, COUNT(*), order_date
WHERE price > 5.00
GROUP BY order_date, manufacturer_id
ORDER BY order_date DESC
HAVING COUNT(*) > 10

Answer:
WHERE price > 5.00

1Z0-061: Reporting Aggregate data

1Z0-061: Reporting Aggregate data

