
Evaluate the following SELECT statement:
SELECT DISTINCT emp_idFROM emp e JOIN emp_hist hON e.emp_id = h.emp_id;
Which SELECT statement will return the same result as the given statement?

Explanation:
The following SELECT statement will return the same result as the statement given in this scenario:
SELECT emp_idFROM emp INTERSECTSELECT emp_idFROM emp_hist;
The given JOIN statement returns only the emp_id values that are common to the emp and emp_hist tables. The INTERSECT
operator in the correct option also returns only the emp_id values that are common to both tables.
The following SELECT statement is incorrect because it uses the UNION operator and will return all the rows in both tables, eliminating
any duplicates:
SELECT emp_idFROM emp UNIONSELECT emp_idFROM emp_hist;
The statement does not display only the values that are common to both tables; it displays all values in both tables.
The following SELECT statement is incorrect because it returns the emp_id values that are unique for each table:
SELECT e.emp_idFROM emp e, emp_hist h;WHERE e.emp_id <> h.emp_id;

Item: 1 (Ref:1Z0-061.8.7.2)

SELECT emp_idFROM emp UNIONSELECT emp_idFROM emp_hist;
SELECT e.emp_idFROM emp e, emp_hist h;WHERE e.emp_id <> h.emp_id;
SELECT emp_idFROM emp MINUSSELECT emp_idFROM emp_hist;
SELECT emp_idFROM emp INTERSECTSELECT emp_idFROM emp_hist;

Answer:
SELECT emp_idFROM emp INTERSECTSELECT emp_idFROM emp_hist;

1Z0-061: Subqueries

The statement does not display the values that are common to both tables; it displays the emp_id values that are unique in each
table.
The following SELECT statement is incorrect because it returns the emp_id values that are in the emp table, but are not in the
emp_hist table:
SELECT emp_idFROM emp MINUSSELECT emp_idFROM emp_hist;
The statement does not display the values that are common to both tables; it displays the emp_id values that are in the emp table
and are not in the emp_hist table.

1Z0-061: Subqueries

Examine the structures of the PLAYER and TEAM tables:
PLAYER-------------PLAYER_ID NUMBER PKLAST_NAME VARCHAR2(30)FIRST_NAME VARCHAR2(25)TEAM_ID NUMBERMGR_ID NUMBERSIGNING_BONUS NUMBER(9,2)
TEAM---------TEAM_ID NUMBERTEAM_NAME VARCHAR2(30)
Which situation would require a subquery to return the desired result?

Explanation:
With the given tables, a subquery would be required to produce a list of all players who received a signing bonus that was lower than the average. To produce a list of players who received a signing bonus that was lower than the average, you could use:
SELECT last_name, first_nameFROM playerWHERE signing_bonus < (SELECT AVG(signing_bonus)FROM player);
To produce a list of all players that are also managers, you could use a self join to join the PLAYER table to itself.
To produce a list of all teams with more than 11 players, you could query the PLAYER table grouping the records by TEAM_ID and
using the COUNT function to count the distinct values of PLAYER_ID. Then, after grouping the data you could use a HAVING clause to
return only those teams having more than 11 players.
To produce a list of all players, including their manager names and signing bonuses, you could use a self join to join the PLAYER table
to itself. This would allow you to display each player's manager.
To produce a list of all players who have a larger signing bonus than their manager, you would join the PLAYER table to itself using a
self join and then compare the signing bonuses for the player and the manager using a WHERE clause.
Subqueries are often used in a WHERE clause of a SQL statement to return values for an unknown conditional value. The inner query
executes first and returns the results to the outer query for use in the outer query's WHERE clause.

Item: 2 (Ref:1Z0-061.8.2.2)

a list of all players who are also managers
a list of all teams that have more than 11 players
a list of all players, including their signing bonus amounts and their manager names
a list of all players who have a larger signing bonus than their manager
a list of all players who received a signing bonus that was lower than the average bonus

Answer:
a list of all players who received a signing bonus that was lower than the average bonus

1Z0-061: Subqueries

Evaluate this SELECT statement:
SELECT first_name, last_nameFROM physicianWHERE physician_id NOT IN (SELECT physician_idFROM physician WHERE license_no = 17852);
Which one of the following SELECT statements would achieve the same result?

Explanation:
The following SELECT statement will return the same result as the given SELECT statement:
SELECT first_name, last_nameFROM physicianWHERE physician_id != ALL (SELECT physician_idFROM physician WHERE license_no = 17852);
In the scenario, the given SELECT statement uses the NOT IN operator to display all physicians who do not have a license number of
17852. The same results can be achieved using the != and ALL operators. If null values are likely to be returned by the inner query,
you should not use either of these operators. If one of the values returned by the inner query is null, the entire query will not return any rows, because all the conditions that compare a NULL value yield a null result.
The SELECT statement that includes WHERE physician_id = 17852 as the query condition is incorrect because it will return only
the physician that has an identifier of 17852, and this is not what you desired.
The SELECT statement that includes the PHYSICIAN_ID table in the FROM clause is incorrect. PHYSICIAN_ID is a column in the
PHYSICIAN table, not a table itself.
The SELECT statement that uses a subquery with the IN operator returns the opposite of what you needed. The inner query returns
the identifier for the physician with a license number of 17852, and then the outer query returns this physician's name. You needed all the physicians who did not have a license number of 17852. Therefore, this option is incorrect.

Item: 3 (Ref:1Z0-061.8.4.3)

SELECT first_name, last_nameFROM physicianWHERE physician_id = 17852;
SELECT first_name, last_nameFROM physician_idWHERE license_no <> 17852AND license_no IS NOT NULL;
SELECT first_name, last_nameFROM physicianWHERE physician_id IN (SELECT physician_idFROM physician WHERE license_no = 17852);
SELECT first_name, last_nameFROM physicianWHERE physician_id != ALL (SELECT physician_idFROM physician WHERE license_no = 17852);

Answer:
SELECT first_name, last_nameFROM physicianWHERE physician_id != ALL (SELECT physician_idFROM physician WHERE license_no = 17852);

1Z0-061: Subqueries

Evaluate the SELECT statements in the following SQL compound queries:
SELECT emp_idFROM empINTERSECTSELECT emp_idFROM emp_hist;
SELECT emp_idFROM emp_histINTERSECTSELECT emp_idFROM emp;
Which statement is TRUE regarding these SQL compound queries?

Explanation:
The results of the two queries will be identical because reversing the order of the SELECT statements with an INTERSECT operator
will not alter the result set.
The first compound query will return the same number of results as the second compound query.
Reversing the order of the SELECT statements in a compound query using the INTERSECT operator will not affect the result set.
The second compound query does not contain a syntax error. The query uses the appropriate SELECT statement syntax, which is as
follows:
{ query_block| subquery { UNION [ALL] | INTERSECT | MINUS } subquery[{ UNION [ALL] | INTERSECT | MINUS } subquery]...| (subquery)} [order_by_clause]

Item: 4 (Ref:1Z0-061.8.7.4)

The results of the compound queries will be identical.
The first compound query will return more results than the second.
The second compound query will return more results than the first.
The second compound query will return a syntax error.

Answer:
The results of the compound queries will be identical.

1Z0-061: Subqueries

The employee table contains these columns:
EMPLOYEE_ID NUMBER NOT NULLEMP_LNAME VARCHAR2(20) NOT NULLEMP_FNAME VARCHAR2(10) NOT NULLDEPT_ID NUMBERSALARY NUMBER(9,2)
A user needs to retrieve information on employees who have the same department ID and salary as an employee ID that the user will enter. You want the query results to include employees who do not have a salary, but not the employee that the user entered.
Which statement will return the desired result?

Explanation:
The following query will retrieve the desired result:
SELECT *FROM employeeWHERE (dept_id, NVL(salary, 0)) IN (SELECT dept_id, NVL(salary, 0)FROM employeeWHERE employee_id = &&1)AND employee_id <> &&1;

Item: 5 (Ref:1Z0-061.8.4.4)

SELECT *FROM employee WHERE (department, salary) NOT IN
(SELECT department, salary)FROM employeeWHERE employee_id = &1);
SELECT *FROM employeeWHERE (dept_id, salary) IN (SELECT dept_id, NVL(salary, 0)FROM employeeWHERE employee_id = &1);
SELECT *FROM employeeWHERE (dept_id, NVL(salary, 0)) IN
(SELECT dept_id, NVL(salary, 0)FROM employeeWHERE employee_id = &&1)AND employee_id <> &&1;
SELECT *FROM employeeWHERE (dept_id, salary) IN(SELECT dept_id, salary)FROM employeeWHERE employee_id = &1AND salary IS NULL);

Answer:
SELECT *FROM employeeWHERE (dept_id, NVL(salary, 0)) IN
(SELECT dept_id, NVL(salary, 0)FROM employeeWHERE employee_id = &&1)AND employee_id <> &&1;

1Z0-061: Subqueries

When this statement executes, the inner query is processed first. The inner query returns the dept_id and salary values for the
employee_id entered. These values are passed to the outer query, which produces a list of employees having the same department
and salary. If a NULL value is returned in a subquery, the entire query will return no rows. To ensure that the subquery does not return
a NULL value for the salary column, the NVL function is used. Because a value of zero is returned from the subquery if the salary
value is NULL, the query result will include employees that do not have a salary. In addition, the employee_id <> &&1 condition in
the outer query WHERE clause will exclude the employee entered from the list.
The SELECT statement that references the department column is invalid because this is not a valid column name in the employee
table.
The SELECT statement that is similar to the correct statement but includes only one condition in the outer query WHERE clause is
incorrect. Although this query will return the correct list of employees, it will also return the employee that was entered, and this is not what you desired.
The SELECT statement that uses salary IS NULL in the inner query WHERE clause is incorrect. This inner query will return a NULL
value, and when a subquery returns a NULL value, the entire result is null. Therefore, this query will return no rows.

1Z0-061: Subqueries

Which construct can be used to return data based on an unknown condition?

Explanation:
A subquery can be used to return data based on an unknown condition. Often when the condition for a query cannot be stated directly, the query can be broken into two smaller queries to return the desired result. The subquery, or inner query, returns a value that is used by the main, or outer, query.
A GROUP BY clause creates groups of data so that aggregate calculations, such as sums and averages, can be performed on the
group. An ORDER BY clause sorts the results of a query based on a specified sort order. A WHERE clause, whether it includes a logical
conditional operator or not, defines a condition that must be met for rows to be returned. None of these constructs will allow you to return data based on an unknown condition.

Item: 6 (Ref:1Z0-061.8.2.1)

a subquery
a GROUP BY clause
an ORDER BY clause
a WHERE clause with an OR condition

Answer:
a subquery

1Z0-061: Subqueries

Evaluate this SELECT statement:
SELECT s.student_name, s.grade_point_avg, s.major_id, m.gpa_avgFROM student s, (SELECT major_id, AVG(grade_point_avg) gpa_avgFROM studentGROUP BY major_id) mWHERE s.major_id = m.major_id AND s.grade_point_avg > m.gpa_avg;
What will be the result of executing this SELECT statement?

Explanation:
The names of all students with a grade point average that is higher than the average grade point average in their major will be displayed. You can use a subquery in the FROM clause of a SELECT statement to define a data source for the SELECT statement. This
is helpful if you need to view aggregate values but need to include columns in the select list that are not grouped. In this scenario, the subquery returns the major_id values and the average grade point average of students with each major. This result is then used as
a data source for the main query. The WHERE clause of the main query joins this result table to the STUDENT table using major_id
and ensures that you only return rows where the grade point average is higher than the average grade point average of the student's major.
The option stating that the names of all students with a grade point average that is higher than the average grade point average of all students will be displayed is incorrect. Because the inner query groups the records by major and the outer query WHERE clause joins
on major, each student's grade point average will be compared to the average grade point average for the same major.
The option stating that the names of all students grouped by major are displayed is incorrect. The outer query does not contain a GROUP BY clause, so records returned are not grouped.
The option stating that an error will occur because of ambiguous table aliases is incorrect. Although the table alias m is used twice, this is acceptable. The main query uses the table alias for the entire subquery.
The option stating that an error will occur because the FROM clause cannot contain a subquery is incorrect because a table, view, or
subquery is allowed in the FROM clause of a SELECT statement.

Item: 7 (Ref:1Z0-061.8.4.2)

The names of all students with a grade point average that is higher than the average grade point average in their major will be displayed.
The names of all students with a grade point average that is higher than the average grade point average of all students will be displayed.
The names of all students, grouped by each major, with a grade point average that is higher than the average grade point average of all students in each major will be displayed.
A syntax error will occur because of ambiguous table aliases.
A syntax error will be returned because the FROM clause cannot contain a subquery.

Answer:
The names of all students with a grade point average that is higher than the average grade point average in their major will be displayed.

1Z0-061: Subqueries

Evaluate this SELECT statement:
SELECT product_id, category_idFROM productORDER BY 2INTERSECTSELECT product_id, category_idFROM product_history;
Which of the following results is TRUE regarding this SELECT statement?

Explanation:
This statement will return an error. Only one ORDER BY clause is allowed in a compound query, and it must be placed at the end of
the compound query. The correct statement would be as follows:
SELECT product_id, category_idFROM productINTERSECTSELECT product_id, category_idFROM product_historyORDER BY 2;
The ORDER BY clause in a compound query will only recognize and sort the columns in the first SELECT list. If this statement was
corrected, the clause ORDER BY 2 will sort the results based on the category_id values retrieved by the first query in the
compound query.

Item: 8 (Ref:1Z0-061.8.8.2)

It will return the results sorted ascending by the category_id values returned by the first query.
It will return the results sorted ascending by the category_id values returned by both queries.
It will return the results sorted ascending by both the product_id and category_id values returned by the first query.
It will return the results sorted ascending by both the product_id and category_id values returned by both queries.
It will return an error.

Answer:
It will return an error.

1Z0-061: Subqueries

Examine the structures of the CUSTOMER and CURR_ORDER tables:
CUSTOMER--------------------CUSTOMER_ID NUMBER(5)NAME VARCHAR2(25)CREDIT_LIMIT NUMBER(8,2)ACCT_OPEN_DATE DATE
CURR_ORDER-------------------------ORDER_ID NUMBER(5)CUSTOMER_ID NUMBER(5)ORDER_DATE DATETOTAL NUMBER(8,2)
Which scenario would require a subquery to return the desired results?

Explanation:
With the given tables, a subquery would be required to determine which customers have placed orders with amount totals larger than the average order amount. To return the desired result, an inner query would return the average order amount. Then, the outer query would use this value in the WHERE clause to restrict the rows returned to only those customers who had placed orders with total
amounts larger than the average order amount.
You could display the names of all the customers who placed an order today by using a join operator or a subquery, but a subquery is not required. This could be accomplished simply by joining the CUSTOMER and CURR_ORDER tables using the CUSTOMER_ID column
and including WHERE order_date = sysdate to restrict the rows to only those customers placing orders today.
To determine the number of orders placed this year by the customer with CUSTOMER_ID value 30450, you could query the
CURR_ORDER table restricting the rows using a WHERE clause and include the COUNT aggregate function in the select list.
To determine the average credit limit of all the customers who opened an account this year, you could join the CUSTOMER and
CURR_ORDER tables and restrict the rows using a WHERE clause. Then, use the AVG aggregate function in the select list to calculate
the average credit limit for each group of rows.
Subqueries are often used in a WHERE clause of a SQL statement to return values for an unknown conditional value. The inner query
executes first and returns the results to the outer query for use in the outer query's WHERE clause.

Item: 9 (Ref:1Z0-061.8.2.3)

You need to display the names of all the customers who placed an order today.
You need to determine the number of orders placed this year by the customer with CUSTOMER_ID value 30450.
You need to determine the average credit limit of all the customers who opened an account this year.
You need to determine which customers have placed orders with amount totals larger than the average order amount.

Answer:
You need to determine which customers have placed orders with amount totals larger than the average order amount.

1Z0-061: Subqueries

Which set operator would you use to display the employee IDs of employees hired after January 10, 2007 in the employee table and
employee IDs of employees who have held more than one position in the emp_hist table, eliminating any duplicate IDs?

Explanation:
You should use the UNION operator to display the employee IDs of employees hired after January 10, 2007 in the employee table
and employee IDs of employees who have held more than one position in the emp_hist table, eliminating any duplicate IDs. The
following SQL statement will achieve this result set:
SELECT emp_idFROM employeeWHERE hire_date > TO_DATE('10-JAN-2007')UNIONSELECT emp_idFROM emp_hist;
Set operators allow the results of two or more queries to be combined into a single result set. SQL statements that include set operators are known as compound queries. The set operators are:

l UNION - returns the result sets from all the queries after eliminating any duplicate records
l UNION ALL - returns the result sets from all the queries in a statement including the duplicate records
l INTERSECT - returns only the common result sets that are retrieved by all the queries
l MINUS - returns only the results that are returned by the first query and not by the second query.

Set operators of equal precedence are evaluated from left to right unless parentheses force the order of evaluation. When using a set operator, the columns in the SELECT list in each query must be the same in number and data type.

Item: 10 (Ref:1Z0-061.8.6.1)

UNION
UNION ALL
INTERSECT
MINUS

Answer:
UNION

1Z0-061: Subqueries

You need to create a report to display the names of customers with a credit limit greater than the average credit limit of all customers.
Which SELECT statement should you use?

Explanation:
You should use the following SELECT statement:
SELECT last_name, first_nameFROM customerWHERE credit_limit > (SELECT AVG(credit_limit) FROM customer);
To return the names of all customers with a credit limit greater than the average credit limit of all customers, you must use the statement that uses a subquery and compares the credit limit to the subquery values using the greater than operator (>). In this scenario, the inner query returns the average credit limit of all customers. The outer query takes this average credit limit value and uses this value to display all the customers who have a credit limit greater than this amount.
The statement that includes WHERE credit_limit > AVG(credit_limit) for the query condition is incorrect. Aggregate, or
group, functions cannot be used in a WHERE clause.
Neither of the statements that group the result by AVG(credit_limit) is correct because group functions are not allowed in a
GROUP BY clause.
The statement that includes a subquery and compares the credit limit to the subquery values using the equality operator (=) will return only those customers who have a credit limit equal to the average credit limit of all customers, and this is not what you desired.

Item: 11 (Ref:1Z0-061.8.4.6)

SELECT last_name, first_nameFROM customerWHERE credit_limit > AVG(credit_limit);
SELECT last_name, first_name, AVG(credit_limit)FROM customerGROUP BY AVG(credit_limit);
SELECT last_name, first_name, AVG(credit_limit)FROM customerGROUP BY AVG(credit_limit)HAVING credit_limit > AVG(credit_limit);
SELECT last_name, first_nameFROM customerWHERE credit_limit > (SELECT AVG(credit_limit)
FROM customer);
SELECT last_name, first_nameFROM customerWHERE credit_limit = (SELECT AVG(credit_limit)
FROM customer);

Answer:
SELECT last_name, first_nameFROM customerWHERE credit_limit > (SELECT AVG(credit_limit)
FROM customer);

1Z0-061: Subqueries

Evaluate this SELECT statement:
SELECT emp_id "Employee", dept_id "Department"FROM empINTERSECTSELECT emp_id employee, dept_id departmentFROM empWHERE dept_id >100MINUSSELECT emp_id "Employee", dept_id "Department"FROM empWHERE dept_id <> 200ORDER BY 2;
Which of the following statements is true?

Explanation:
The statement will return the results sorted by the dept_id values in the first query. Only one ORDER BY clause is allowed in a
compound query, and it must be placed at the end of the compound query. The ORDER BY clause only recognizes and sorts the
columns in the first SELECT list in a compound query.
For this statement, the clause ORDER BY 2 will sort the results based on the dept_id values retrieved by the first query in the
compound query.

Item: 12 (Ref:1Z0-061.8.8.3)

The statement will return the results sorted by the dept_id values in the first query.
The statement will return the results sorted by the dept_id values in the second query.
The statement will return the results sorted by the dept_id values in the third query.
The statement will return an error.

Answer:
The statement will return the results sorted by the dept_id values in the first query.

1Z0-061: Subqueries

Which two statements regarding the valid use of single-row and multiple-row subqueries are true? (Choose two.)

Explanation:
The following two statements regarding the valid use of single-row and multiple-row subqueries are true:

l Single-row operators can only be used with single-row subqueries.
l Multiple-row subqueries can be used in a WHERE clause and the INTO portion of an INSERT statement.

A single-row subquery is a subquery that returns only one row from the inner SELECT statement. Single-row subqueries can only be
used with single-row operators, such as =, > , >=, <, <=, or <>. When a single-row operator is used, then the subquery must be a single-row subquery that returns only one row. If you attempt to use a single-row operator with a subquery that returns multiple rows, an error occurs. Multiple-row subqueries can be used in a WHERE clause and the INTO portion of an INSERT statement. When used in
a WHERE clause, the multiple-row subquery must use a multiple-row operator, such as IN, ANY, or ALL. When used in the INTO
portion of an INSERT statement, all rows returned by the multiple-row subquery are inserted into the specified table.
The option stating that single-row subqueries can only be used in a WHERE clause is incorrect. Single-row subqueries can be used any
place that a single scalar value can be used.
The option stating that multiple-row subqueries can be used with the LIKE operator is incorrect. The LIKE operator accepts a single
value and can only be used with single-row queries.
The option stating that single- and multiple-row subqueries can be used with the BETWEEN operator is incorrect. The BETWEEN
operator accepts two values. Either one or both of these values may come from single-row subqueries. However, the values may not come from multiple-row subqueries.
The option stating that multiple-row subqueries can be used with both single-row and multiple-row operators is incorrect because they can only use multiple-row operators.

Item: 13 (Ref:1Z0-061.8.1.1)

Single-row subqueries can only be used in a WHERE clause.
Multiple-row subqueries can be used with the LIKE operator.
Single-row operators can only be used with single-row subqueries.
Single- and multiple-row subqueries can be used with the BETWEEN operator.
Multiple-row subqueries can be used with both single-row and multiple-row operators.
Multiple-row subqueries can be used in a WHERE clause and the INTO portion of an INSERT statement.

Answer:
Single-row operators can only be used with single-row subqueries.
Multiple-row subqueries can be used in a WHERE clause and the INTO portion of an INSERT statement.

1Z0-061: Subqueries

Examine the data from the DONATION table.

This statement fails when executed:
SELECT amount_pledged, amount_paidFROM donationWHERE donor_id =(SELECT donor_idFROM donationWHERE amount_pledged = 1000.00OR pledge_dt = '05-JAN-2002');
Which two changes could correct the problem? (Choose two. Each correct answer is a separate solution.)

Explanation:
This statement fails because the subquery returns multiple rows, which cannot be compared to a single value using the equality operator (=) in the outer query. To correct the problem, you could change the outer query WHERE clause to WHERE donor_id IN.
Changing the outer query WHERE clause to use the IN operator would allow the inner query to return multiple rows without generating
an error.
Alternatively, you could change the subquery WHERE clause to WHERE amount_pledged = 1000.00 AND pledge_dt = '05-
JAN-2002'. Based on the given data, this change would cause only one row to be returned and would also eliminate the error.
Removing the subquery WHERE clause, changing the outer query WHERE clause to WHERE donor_id LIKE, or including the
donor_id column in the select list of the outer query would not correct the problem. The inner query would still return multiple rows
and produce an error.
Removing the single quotes around the date value in the inner query WHERE clause will not correct the problem. When dates values
are used in a WHERE clause, they must be enclosed in single quotation marks.

Item: 14 (Ref:1Z0-061.8.4.1)

Remove the subquery WHERE clause.
Change the outer query WHERE clause to WHERE donor_id IN.
Change the outer query WHERE clause to WHERE donor_id LIKE.
Include the donor_id column in the select list of the outer query.
Remove the single quotes around the date value in the inner query WHERE clause.
Change the subquery WHERE clause to WHERE amount_pledged = 1000.00 AND pledge_dt = '05-JAN-2002'.

Answer:
Change the outer query WHERE clause to WHERE donor_id IN.
Change the subquery WHERE clause to WHERE amount_pledged = 1000.00 AND pledge_dt =
'05-JAN-2002'.

1Z0-061: Subqueries

1Z0-061: Subqueries

Examine the structure of the employee table.

You want to generate a list of employees are in department 30, have been promoted from clerk to associate by querying the employee and employee_hist tables. The employee_hist table has the same structure as the employee table. The job_id
value for clerks is 1 and the job_id value for associates is 6.
Which query should you use?

Item: 15 (Ref:1Z0-061.8.4.5)

SELECT employee_id, emp_lname, emp_fname, dept_idFROM employeeWHERE (employee_id, dept_id) IN (SELECT employee_id, dept_idFROM employee_histWHERE dept_id = 30 AND job_id = 1)AND job_id = 6;
SELECT employee_id, emp_lname, emp_fname, dept_idFROM employeeWHERE (employee_id) IN (SELECT employee_idFROM employee_hist WHERE dept_id = 30 AND job_id = 1);
SELECT employee_id, emp_lname, emp_fname, dept_idFROM employeeWHERE (employee_id, dept_id) = (SELECT employee_id, dept_idFROM employee_hist WHERE dept_id = 30 AND job_id = 6);
SELECT employee_id, emp_lname, emp_fname, dept_idFROM employeeWHERE (employee_id, dept_id) IN (SELECT employee_id, dept_id FROM employee WHERE dept_id = 30)AND job_id = 6;
SELECT employee_id, emp_lname, emp_fname, dept_idFROM employee_histWHERE (employee_id, dept_id) = (SELECT employee_id, dept_id FROM employee_hist WHERE dept_id = 30 AND job_id = 1)AND job_id = 6;

Answer:
SELECT employee_id, emp_lname, emp_fname, dept_idFROM employeeWHERE (employee_id, dept_id) IN (SELECT employee_id, dept_id

1Z0-061: Subqueries

Explanation:
You should use the following query:
SELECT employee_id, emp_lname, emp_fname, dept_idFROM employeeWHERE (employee_id, dept_id) IN (SELECT employee_id, dept_idFROM employee_histWHERE dept_id = 30 AND job_id = 1)AND job_id = 6;
A multi-column subquery is used to retrieve the employee IDs and department IDs of employees who are clerks (job_id = 1) and
who work in department 30 from the employee_hist table. The IN operator is used to compare the list of employee IDs retrieved
from the subquery with the employee IDs in the employee table (the outer query). This retrieved list of employees is further qualified
with the use of the AND operator, eliminating any employees from the list that are not currently associates (job_id = 6). The result
is a list of employees in department 30 who were promoted from clerk to associate.
The SELECT statement that returns a single column in the subquery is incorrect because this statement will return a list of all
employees who were previously clerks in department 30.
The SELECT statement that includes WHERE dept_id = 30 AND job_id = 6 as the condition for the inner query is incorrect
because this statement returns all employees who at any time have been associates in department 30.
Both of the statements that use the same table in the inner and outer query are incorrect. To produce a report of promotions, both tables must be included in the query. The employee table must be queried to check for each employee's current job, and the
employee_hist table must be queried to determine each employee's previous position.

FROM employee_histWHERE dept_id = 30 AND job_id = 1)AND job_id = 6;

1Z0-061: Subqueries

Which two SELECT statements have valid ORDER BY clauses? (Choose two. Each correct answer is a separate solution.)

Explanation:
This SELECT statement has a valid ORDER BY clause:
SELECT product_id, category_idFROM current_productMINUSSELECT product_id, category_id

Item: 16 (Ref:1Z0-061.8.8.1)

SELECT product_idFROM current_productMINUSSELECT product_idFROM product_developWHERE develop_cost > 5.60ORDER BY develop_cost;
SELECT product_id, category_idFROM current_productMINUSSELECT product_id, category_idFROM product_developWHERE resource_code = 10ORDER BY 1,2;
SELECT product_id Product, category_id CategoryFROM current_productMINUSSELECT product_id, category_idFROM product_developWHERE resource_code = 10ORDER BY Category, Product;
SELECT product_id, category_idFROM current_productORDER BY 1,2MINUSSELECT product_id, category_idFROM product_developWHERE resource_code = 10;
SELECT product_id Product, category_id CategoryFROM current_productORDER BY Category, ProductMINUSSELECT product_id, category_idFROM product_developWHERE resource_code = 10;

Answer:
SELECT product_id, category_idFROM current_productMINUSSELECT product_id, category_idFROM product_developWHERE resource_code = 10ORDER BY 1,2;
SELECT product_id Product, category_id CategoryFROM current_productMINUSSELECT product_id, category_idFROM product_developWHERE resource_code = 10ORDER BY Category, Product;

1Z0-061: Subqueries

FROM product_developWHERE resource_code = 10ORDER BY 1,2;
The results of the compound query will be sorted by the product_id values and then by the category_id values returned by the
first query in the compound statement. The ORDER BY clause uses the column positions in the first SELECT list.
This SELECT statement also has a valid ORDER BY clause:
SELECT product_id Product, category_id CategoryFROM current_productMINUSSELECT product_id, category_idFROM product_developWHERE resource_code = 10ORDER BY Category, Product;
The results of the compound query will be sorted by the category_id values and then by the product_id values returned by the
first query in the compound statement. The ORDER BY clause uses the column aliases defined in the SELECT list.
The ORDER BY clause in the following SELECT statement is incorrect because you can use columns in only the first SELECT list in a
compound query:
SELECT product_idFROM current_productMINUSSELECT product_idFROM product_developWHERE develop_cost > 5.60ORDER BY develop_cost;
You cannot sort the results by the develop_cost values because this column is not included in the first SELECT list in this
compound query.
The ORDER BY clause in the following SELECT statement is incorrect because the ORDER BY clause must be placed at the end of a
compound query:
SELECT product_id, category_idFROM current_productORDER BY 1,2MINUSSELECT product_id, category_idFROM product_developWHERE resource_code = 10;
The ORDER BY clause uses the column positions in the first SELECT list. Moving this ORDER BY clause to the end of the compound
statement would allow this statement to execute.
The ORDER BY clause in the following SELECT statement is incorrect because the ORDER BY clause must be placed at the end of a
compound query:
SELECT product_id Product, category_id CategoryFROM current_productORDER BY Category, ProductMINUSSELECT product_id, category_idFROM product_developWHERE resource_code = 10;
The ORDER BY clause uses the column aliases defined in the first SELECT list. Moving this ORDER BY clause to the end of the
compound statement would allow this statement to execute.

1Z0-061: Subqueries

How many values could a subquery used with the <> operator return?

Explanation:
The not equal (<>) operator is a single-row operator. Single-row operators can only be used with single-row subqueries, or inner
queries, that return only one row. Attempting to use the not equal (<>) operator with a query that returns more than one row will
generate an error.
All other options that indicate more than one value could be returned are incorrect. If a subquery returns more than one row, then it can only be used with a multiple-row operator. Multiple-row operators include the IN, ANY, and ALL operators.

Item: 17 (Ref:1Z0-061.8.1.2)

only one
up to two
up to ten
unlimited

Answer:
only one

1Z0-061: Subqueries

Click the Exhibit(s) button to examine the structures of the CURRENT_PRODUCTS , LINE_ITEM , and PRODUCT_DEVELOP tables.
You need to display the product IDs for current products that were released before January 1, 2008 and were sold after July 10, 2008.

Which two SELECT statements will return the desired results? (Choose two. Each correct answer is a separate solution.)

Item: 18 (Ref:1Z0-061.8.7.1)

SELECT product_idFROM current_productsINTERSECTSELECT product_idFROM product_developWHERE release_date < TO_DATE('01-JAN-2008')MINUSSELECT product_idFROM line_itemWHERE sale_date <= TO_DATE('10-JUL-2008');
SELECT product_idFROM current_productsINTERSECTSELECT product_idFROM product_developWHERE release_date < TO_DATE('01-JAN-2008')INTERSECTSELECT product_idFROM line_itemWHERE sale_date > TO_DATE('10-JUL-2008');
SELECT product_idFROM current_productsUNIONSELECT product_idFROM product_developWHERE release_date < TO_DATE('01-JAN-2008')UNIONSELECT product_idFROM line_itemWHERE sale_date >= TO_DATE('10-JUL-2008');
SELECT product_idFROM current_productsUNIONSELECT product_idFROM product_developWHERE release_date < TO_DATE('01-JAN-2008')MINUSSELECT product_idFROM line_itemWHERE sale_date >= TO_DATE('10-JUL-2008');
SELECT product_idFROM current_productsUNIONSELECT product_idFROM product_developWHERE release_date < TO_DATE('01-JAN-2008')UNIONSELECT product_idFROM line_itemWHERE sale_date <= TO_DATE('10-JUL-2008');

Answer:
SELECT product_idFROM current_productsINTERSECTSELECT product_idFROM product_develop

1Z0-061: Subqueries

Explanation:
The following SELECT statement will display the product_id values for current products that were released before January 1, 2008
and sold after July 10th, 2008:
SELECT product_idFROM current_productsINTERSECTSELECT product_idFROM product_developWHERE release_date < TO_DATE('01-JAN-2008')MINUSSELECT product_idFROM line_itemWHERE sale_date <= TO_DATE('10-JUL-2008');
The first query returns all the product_id values from the CURRENT_PRODUCTS table. The second query returns only the
product_id values from the PRODUCT_DEVELOP table that released before January 10, 2008. The INTERSECT operator returns
only the product_id values that are common in the first and second queries. The final query pulls only the product_id values
from the line_item table with a sale_date value that is less than or equal to July 10, 2008. The MINUS operator returns only the

WHERE release_date < TO_DATE('01-JAN-2008')MINUSSELECT product_idFROM line_itemWHERE sale_date <= TO_DATE('10-JUL-2008');
SELECT product_idFROM current_productsINTERSECTSELECT product_idFROM product_developWHERE release_date < TO_DATE('01-JAN-2008')INTERSECTSELECT product_idFROM line_itemWHERE sale_date > TO_DATE('10-JUL-2008');

1Z0-061: Subqueries

product_id values that are in the INTERSECT result set but are not in the third query result set. The final result set of this
compound query is the product_id values that are current products released before January 1, 2008 and sold after July 10, 2008.
The following SELECT statement will also display the product_id values for current products that were released before January 1,
2008 and sold after July 10, 2008:
SELECT product_idFROM current_productsINTERSECTSELECT product_idFROM product_developWHERE release_date < TO_DATE('01-JAN-2008')INTERSECTSELECT product_idFROM line_itemWHERE sale_date > TO_DATE('10-JUL-2008');
The first query returns all the product_id values from the CURRENT_PRODUCTS table. The second query returns only the
product_id values from the PRODUCT_DEVELOP table that released before January 10, 2008. The INTERSECT operator returns
only the product_id values that are common in the first and second queries. The final query pulls only the product_id values
from the line_item table with a sale_date value that is greater than July 10, 2008. The second INTERSECT operator returns only
the product_id values that are in both the first INTERSECT result set and in the third query result set. The final result set of this
compound query is the product_id values that are current products released before January 1, 2008 and sold after July 10, 2008.
This SELECT statement does not return the desired result set:
SELECT product_idFROM current_productsUNIONSELECT product_idFROM product_developWHERE release_date < TO_DATE('01-JAN-2008')UNIONSELECT product_idFROM line_itemWHERE sale_date >= TO_DATE('10-JUL-2008');
The first query returns all the product_id values from the CURRENT_PRODUCTS table. The second query returns only the
product_id values from the PRODUCT_DEVELOP table that released before January 10, 2008. The first UNION operator returns all
the product_id values from both of the first two queries, eliminating any duplicates. The final query pulls only the product_id
values from the line_item table with a sale_date value that is on or after July 10, 2008. The second UNION operator returns all
the product_id values from both the first UNION result set and the third query result set, eliminating any duplicates. The final result
set of this compound query is the product_id values that are current products, all products that were released before January 1,
2008 not just current products, and all products that were released before January 1, 2008 and were sold on or after July 10, 2008.
This SELECT statement does not return the desired result set:
SELECT product_idFROM current_productsUNIONSELECT product_idFROM product_developWHERE release_date < TO_DATE('01-JAN-2008')MINUSSELECT product_idFROM line_itemWHERE sale_date >= TO_DATE('10-JUL-2008');
The first statement returns all the product_id values from the CURRENT_PRODUCTS table. The second query returns only the
product_id values from the PRODUCT_DEVELOP table that released before January 10, 2008. The first UNION operator returns all
the product_id values from the first two queries, eliminating any duplicates. The final query pulls only the product_id values from
the line_item table with a sale_date value that is on or after July 10, 2008. The MINUS operator returns all the product_id
values from the first UNION result set that are not present in the third query result set. The final result set of this compound query is
the product_id values that are current products except products that sold on or after July 10, 2008, all products that were released
before January 1, 2008 (not just current products), and no products sold on or after July 10, 2008.
This SELECT statement does not return the desired result set:
SELECT product_id

1Z0-061: Subqueries

FROM current_productsUNIONSELECT product_idFROM product_developWHERE release_date < TO_DATE('01-JAN-2008')UNIONSELECT product_idFROM line_itemWHERE sale_date <= TO_DATE('10-JUL-2008');
The first statement returns all the product_id values from the CURRENT_PRODUCTS table. The second query returns only the
product_id values from the PRODUCT_DEVELOP table that released before January 10, 2008. The first UNION operator returns all
the product_id values from both of the first two queries, eliminating any duplicates. The final query pulls only the product_id
values from the line_item table with a sale_date value that is on or before July 10, 2008. The second UNION operator returns all
the product_id values from both the first UNION result set and the third query result set. The final result set of this compound query
is the product_id values that are current products, all products that were released before January 1, 2008 (not just current
products), and products that were released before January 1, 2008 and were sold on or before July 10, 2008.

1Z0-061: Subqueries

Evaluate this SQL statement:
SELECT product_id, product_name, price FROM product WHERE supplier_id IN (SELECT supplier_id FROM product WHERE price > 120 OR qty_in_stock > 100);
Which values will be displayed?

Explanation:
The subquery will return the supplier_id values of products that have a price value greater than $120.00 or have a
qty_in_stock value greater than 100. The main query will return the product_id, product_name, and price values for all
products with supplier_id values equal to those returned by the subquery.
The query does not return the product_id, product_name, and price of products that are priced greater than $120.00 and have
a qty_in_stock value greater than 100. To accomplish this, you would use the following query:
SELECT product_id, product_name, priceFROM product WHERE price > 120 AND qty_in_stock > 100;
The query does not return the product_id, product_name, and price of products that are priced greater than $120.00 or that
have a qty_in_stock value greater than 100. To accomplish this, you would use the following query:
SELECT product_id, product_name, price FROM product WHERE price > 120 OR qty_in_stock > 100;
The query does not return the product_id, product_name, and price of products that are priced greater than $120.00 or that
have a qty_in_stock value greater than 100, and that have a supplier. To accomplish this, you would use the following query:
SELECT product_id, product_name, price FROM product WHERE (price > 120 OR qty_in_stock > 100)AND supplier_id IS NOT NULL;

Item: 19 (Ref:1Z0-061.8.4.7)

the product_id, product_name, and price of products that are priced greater than $120.00 and have a qty_in_stock
value greater than 100
the product_id, product_name, and price of products that are priced greater than $120.00 or that have a qty_in_stock
value greater than 100
the product_id, product_name, and price of products that are priced greater than $120.00 or that have a qty_in_stock
value greater than 100, and that have a supplier
the product_id, product_name, and price of products supplied by a supplier with products that are priced greater than
$120.00 or with products that have a qty_in_stock value greater than 100

Answer:
the product_id, product_name, and price of products supplied by a supplier with products
that are priced greater than $120.00 or with products that have a qty_in_stock value greater
than 100

1Z0-061: Subqueries

Evaluate this compound query statement:
SELECT emp_id, last_name || ', '|| first_nameFROM empINTERSECTSELECT emp_idFROM emp_hist;
Which statement is TRUE regarding the given SELECT statement?

Explanation:
This compound query will return an error. The number and data types of the columns in the SELECT list of both queries must be the
same in number and data type. In this compound query, the first SELECT list in the compound query has two columns listed. The
second SELECT list in the compound query only has one column listed. The names of the columns are not required to match, but the
number and data type must match. Removing the last_name || ', '|| first_name concatenated columns from the first
SELECT list would allow the compound query to execute.
The remaining options are incorrect because the compound query will return an error.

Item: 20 (Ref:1Z0-061.8.7.3)

Duplicate emp_id values will be included.
The output will be sorted by the emp_id values in ascending order.
The results will contain the distinct emp_id values return by either query.
The statement will return an error.

Answer:
The statement will return an error.

1Z0-061: Subqueries

1Z0-061: Subqueries

