
The PHYSICIAN table contains these columns:
PHYSICIAN_ID NUMBER NOT NULL PKLAST_NAME VARCHAR2(30) NOT NULLFIRST_NAME VARCHAR2(25) NOT NULLLICENSE_NO NUMBER(7) NOT NULLHIRE_DATE DATE
When new physician records are added, the PHYSICIAN_ID is assigned a sequential value using the PHY_NUM_SEQ sequence.
The state licensing board assigns license numbers with valid license numbers being from 1000000 to 9900000.
You want to create an INSERT statement that will prompt the user for each physician's name and license number and insert the
physician's record into the PHYSICIAN table with a hire date of today. The statement should generate an error if an invalid license
number is entered.
Which INSERT statement should you use?

Explanation:
To perform the necessary insert, you should use the INSERT statement that uses a subquery including the WITH CHECK OPTION
keyword to identify the table for the insert and uses phy_num_seq.NEXTVAL as the value to be inserted for PHYSICIAN_ID.
When using a subquery for the table of a Data Manipulation Language (DML) statement, the WITH CHECK OPTION keyword can

Item: 1 (Ref:1Z0-061.9.2.2)

INSERT INTO physician VALUES (phy_num_seq.NEXTVAL, '&lname', '&fname', &lno, sysdate)WHERE &lno BETWEEN 1000000 and 9900000;
INSERT INTO physician VALUES (phy_num_seq.NEXTVAL, '&lname', '&fname', &lno BETWEEN 1000000 and 9900000, sysdate);
INSERT INTO(SELECT physician_id, last_name, first_name, license_no, hire_dateFROM physicianWHERE license_no BETWEEN 1000000 and 9900000WITH CHECK OPTION)VALUES (phy_num_seq.VALUE, '&lname', '&fname', &lno, sysdate);
INSERT INTO(SELECT physician_id, last_name, first_name, license_no, hire_dateFROM physicianWHERE license_no BETWEEN 1000000 and 9900000WITH CHECK OPTION)VALUES (phy_num_seq.NEXTVAL, &lname, &fname, &lno, sysdate);
INSERT INTO(SELECT physician_id, last_name, first_name, license_no, hire_dateFROM physicianWITH CHECK OPTIONWHERE license_no BETWEEN 1000000 and 9900000)VALUES (phy_num_seq.NEXTVAL, '&lname', '&fname', &lno, sysdate);
INSERT INTO(SELECT physician_id, last_name, first_name, license_no, hire_dateFROM physicianWHERE license_no BETWEEN 1000000 and 9900000WITH CHECK OPTION)VALUES (&phy_num_seq, '&lname', '&fname', &lno, sysdate);

Answer:
INSERT INTO(SELECT physician_id, last_name, first_name, license_no, hire_dateFROM physicianWITH CHECK OPTIONWHERE license_no BETWEEN 1000000 and 9900000)VALUES (phy_num_seq.NEXTVAL, '&lname', '&fname', &lno, sysdate);

1Z0-061: DML

be used to ensure that the DML statement is not allowed if the change would generate rows that are not included in the subquery.
The INSERT statement that includes a WHERE clause is incorrect because a WHERE clause is not allowed with an INSERT
statement.
The INSERT statement that uses the BETWEEN operator in the VALUES clause is incorrect because the BETWEEN operator cannot
be used in a VALUES clause.
The INSERT statement that uses phy_num_seq.VALUE as the value inserted into the PHYSICIAN_ID column is incorrect and will
cause an error. To generate the next sequence value from the PHY_NUM_SEQ sequence, you should use the NEXTVAL keyword.
The INSERT statement that does not include single quotation marks around the &lname and &fname substitution variables is
incorrect because character and date substitution variables should be enclosed in single quotation marks.
The INSERT statement that uses &phy_num_seq as the value to be inserted for PHYSICIAN_ID will prompt the user for a value
for PHYSICIAN_ID, rather than using the sequence as desired. Therefore, this option is incorrect.

1Z0-061: DML

The STUDENT table contains these columns:
STU_ID NUMBER(9) NOT NULLLAST_NAME VARCHAR2(30) NOT NULLFIRST_NAME VARCHAR2(25) NOT NULLDOB DATESTU_TYPE_ID VARCHAR2(1) NOT NULLENROLL_DATE DATE
You create another table, named PT_STUDENT, with an identical structure. You want to insert all part-time students, who have a
STU_TYPE_ID value of P, into the new table. You execute this INSERT statement:
INSERT INTO pt_student(SELECT stu_id, last_name, first_name, dob, sysdateFROM studentWHERE UPPER(stu_type_id) = 'P');
What is the result of executing this INSERT statement?

Explanation:
When executing the given INSERT statement, an ORA-00947: not enough values error occurs because the STU_TYPE_ID
column is not included in the subquery select list. When using a subquery to insert rows from one table into another table, the number and data types of the columns being inserted must match the number and data types of the columns returned by the subquery. In the given INSERT statement, no column list was included. This implies that all columns in the table will be inserted.
The subquery in the statement, returns values for the STU_ID, last_name, and DOB columns, and uses SYSDATE for the
ENROLL_DATE column. The STU_TYPE_ID column, however, is not included, and an error occurs.
All part-time students are not inserted into the PT_STUDENT table because this statement generates an error. If the select list of the
subquery had included the STU_TYPE_ID column or a character constant had been included to give this column a value, all part-
time students would have been inserted into the PT_STUDENT table.
The option stating that an error occurs because the PT_STUDENT table already exists is incorrect. In fact, to use a table in the
INTO portion of a SELECT statement, the table must exist. You can however, use a subquery in a CREATE TABLE statement to
create the table and insert records if needed.
The option stating that an error occurs because you cannot use a subquery in an INSERT statement is incorrect. Subqueries can
be used both in the INTO portion of a SELECT statement and as a substitute for a VALUES clause in an INSERT statement.
The option stating that an error occurs because the INSERT statement does not contain a VALUES clause is incorrect. When
including a subquery for the values to be inserted, the subquery replaces the VALUES clause.
The option stating that an error occurs because both the STU_TYPE_ID and ENROLL_DATE columns are not included in the
subquery select list is incorrect because a valid date value, namely SYSDATE, was provided for the ENROLL_DATE column.
Therefore, the ENROLL_DATE column is not a problem in this INSERT statement.

Item: 2 (Ref:1Z0-061.9.2.3)

All part-time students are inserted into the PT_STUDENT table.
An error occurs because the PT_STUDENT table already exists.
An error occurs because you cannot use a subquery in an INSERT statement.
An error occurs because the INSERT statement does not contain a VALUES clause.
An error occurs because the STU_TYPE_ID column is not included in the subquery select list.
An error occurs because both the STU_TYPE_ID and ENROLL_DATE columns are not included in the subquery select list.

Answer:
An error occurs because the STU_TYPE_ID column is not included in the subquery select list.

1Z0-061: DML

1Z0-061: DML

Click the Exhibit(s) button to examine the data from the po_header and po_detail tables.
Examine the structures of the po_header and po_detail tables:
PO_HEADER--------------------PO_NUM NUMBER NOT NULLPO_DATE DATE DEFAULT SYSDATEPO_TOTAL NUMBER(9,2)SUPPLIER_ID NUMBER(9)PO_TERMS VARCHAR2(25)
PO_DETATIL------------------PO_NUM NUMBER NOT NULLPO_LINE_ID NUMBER NOT NULLPRODUCT_ID NUMBER NOT NULL,QUANTITY NUMBER(3) NOT NULL,UNIT_PRICE NUMBER (5,2) DEFAULT 0,
The primary key of the po_header table is po_num. The primary key of the po_detail table is the combination of po_num and
po_line_id. A foreign key constraint is defined on the po_num column of the po_detail table that references the po_header
table.
You want to update the purchase order total amount for a given purchase order. The po_total column in the po_header table
should equal the sum of the extended amounts of the corresponding po_detail records. You want the user to be prompted for
the purchase order number when the query is executed. When a purchase order is updated, the po_date column should be reset
to the current date.
Which UPDATE statement should you execute?

Item: 3 (Ref:1Z0-061.9.3.2)

UPDATE po_headerSET po_total = (SELECT SUM(ext)FROM (SELECT po_num, quantity * unit_price extFROM po_detailWHERE po_num = &&ponum)),SET po_date = sysdateWHERE po_num = &&ponum;
UPDATE po_headerSET po_total = (SELECT SUM(quantity * unit_price)FROM (SELECT po_num)FROM po_detailWHERE po_num = &&ponum)),po_date = DEFAULTWHERE po_num = &&ponum;
UPDATE po_headerSET po_total = (SELECT SUM(ext)FROM (SELECT po_num, quantity * unit_price extFROM po_detailWHERE po_num = &&ponum)),UPDATE po_headerSET po_date = sysdateWHERE po_num = &&ponum;
UPDATE po_headerSET po_total = (SELECT SUM(ext)FROM (SELECT po_num, quantity * unit_price extFROM po_detailWHERE po_num = &&ponum)),po_date = DEFAULTWHERE po_num = &&ponum;
UPDATE po_headerSET po_total = (SELECT po_num, SUM(ext)FROM (SELECT po_num, quantity * unit_price extFROM po_detail

1Z0-061: DML

Explanation:
To perform the desired updates, you should execute the following UPDATE statement:
UPDATE po_headerSET po_total = (SELECT SUM(ext)FROM (SELECT po_num, quantity * unit_price extFROM po_detailWHERE po_num = &&ponum)),po_date = DEFAULTWHERE po_num = &&ponum;
Subqueries are always evaluated from innermost to outermost. First, the innermost query executes and returns the po_num and
extended amount of each detail line of the specified purchase order. Then, the other subquery accepts this result and sums the extended amounts. The result is the sum of the extended amounts for each line item on the selected purchase order. The po_total column is updated with this value. The po_date column is updated using the DEFAULT keyword. When the DEFAULT
keyword is used in an UPDATE or INSERT statement, the default value for the column being modified is used. In this scenario, the
po_date column in the po_header table has a default value of SYSDATE. Therefore, the po_date is updated to the current
date.

WHERE po_num = &&ponum)),po_date = DEFAULTWHERE po_num = &&ponum;
UPDATE po_headerSET po_total = (SELECT SUM(ext)FROM (SELECT po_num, quantity * unit_price extFROM po_detailWHERE po_num = &&ponum)),po_date = NULLWHERE po_num = &&ponum;

Answer:
UPDATE po_headerSET po_total = (SELECT SUM(ext)FROM (SELECT po_num, quantity * unit_price extFROM po_detailWHERE po_num = &&ponum)),po_date = DEFAULTWHERE po_num = &&ponum;

1Z0-061: DML

The UPDATE statement that includes more than one SET keyword is incorrect. The correct UPDATE statement syntax includes the
SET keyword one time, followed by the columns to be updated separated by commas.
The UPDATE statement that includes SUM(quantity * unit_price) in the first subquery is incorrect. This subquery uses
another subquery in its FROM clause, so only columns returned by the innermost query are available for use.
The UPDATE statement that nests another UPDATE statement within it is incorrect because UPDATE statements cannot be nested.
The UPDATE statement that returns both po_num and SUM(ext) in the first subquery is incorrect because this subquery result is
compared using the = operator. Therefore, this query must return only one value.
The UPDATE statement that uses the NULL keyword to update the po_date column is incorrect. In this scenario, you wanted to
update po_date to the current date. To do so, you could use SYSDATE or DEFAULT. Using the NULL keyword will update the
po_date column to a NULL value instead.
When the DEFAULT keyword is used and no default value is defined for a column, the column is assigned a NULL value.

1Z0-061: DML

Examine the structures of the DEPARTMENT and ASSET tables:
DEPARTMENT-------------------------DEPT_ID NUMBER(9) NOT NULLDEPT_ABBR VARCHAR2(4)DEPT_NAME VARCHAR2(25) NOT NULLMGR_ID NUMBER
ASSET-----------ASSET_ID NUMBER(9) NOT NULLASSET_VALUE FLOATASSET_DESCRIPTION VARCHAR2(25)DEPT_ID NUMBER(9)
The dept_id column of the ASSET table has a foreign key constraint referencing the DEPARTMENT table. You attempt to update
the ASSET table using this statement:
UPDATE assetSET dept_id =(SELECT dept_idFROM departmentWHERE dept_name = (SELECT dept_nameFROM departmentWHERE dept_abbr = 'FINC')),asset_value = 10000WHERE asset_id = 2;
Which two of the following statements must be true for this UPDATE statement to execute without generating an error? (Choose
two.)

Explanation:
When executing the given UPDATE statement, each of the subqueries must return only one row. Because the equality (=) operator
is used with each of the subqueries, each must return a single value or an error occurs. Therefore, only one row in the department table can have a dept_abbr value of FINC, and only one row in the department table can have the same
dept_name value as the department with dept_abbr of FINC.
Although an asset with an asset_id value of 2 must exist for the intended update to be performed, it is not required for the given
statement to execute without an error. The statement will execute successfully, but will perform no updates.
The option stating that one of the subqueries should be removed because subqueries cannot be nested is incorrect because nested subqueries are allowed. Subqueries can be nested as many times as needed to perform a task.
The option stating that both of the subqueries used in the UPDATE statement must return one and only one non-null value is also

Item: 4 (Ref:1Z0-061.9.3.1)

An asset with an asset_id value of 2 must exist in the ASSET table.
Only one row in the department table can have a dept_abbr value of FINC.
One of the subqueries should be removed because subqueries cannot be nested.
Both of the subqueries used in the UPDATE statement must return one and only one non-null value.
Only one row in the department table can have the same dept_name value as the department with dept_abbr of FINC.

Answer:
Only one row in the department table can have a dept_abbr value of FINC.
Only one row in the department table can have the same dept_name value as the department
with dept_abbr of FINC.

1Z0-061: DML

incorrect. An error does not occur if a subquery returns no values. However, your update result might not be as expected.

1Z0-061: DML

The product table contains these columns:
PRODUCT_ID NUMBER NOT NULLPRODUCT_NAME VARCHAR2(25)SUPPLIER_ID NUMBERLIST_PRICE NUMBER(7,2)COST NUMBER(7,2)
You want to execute one DML statement to increase the cost of all products with a product name of Widget Connector by 10 percent and change the cost of all products with a description of Widget C - Round to equal the new cost of Widget Connector. Currently, all models of Widget Connectors have the same cost value.
Which statement should you execute?

Explanation:
You should execute the following statement:
UPDATE product SET cost = (SELECT DISTINCT cost * 1.10FROM productWHERE product_name = 'Widget Connector')WHERE product_name IN('Widget C - Round', 'Widget Connector');
The subquery retrieves the cost value of Widget Connectors increased by 10 percent. This value is then used as the new cost value of products with the description of Widget Connector and Widget C - Round. Because the question states that all
Widget Connectors currently have the same cost and because the DISTINCT keyword is used in the subquery, the subquery
returns only one row. This is required because a single-row operator is used with the subquery.
The statement that calculates the new cost as cost * .10 is incorrect because it will only set the new cost values to 10 percent
of the original value, not increase them by 10 percent.

Item: 5 (Ref:1Z0-061.9.3.3)

UPDATE product SET cost = (SELECT DISTINCT cost * 1.10FROM productWHERE product_name = 'Widget Connector')WHERE product_name IN('Widget C - Round', 'Widget Connector');
UPDATE product SET cost = (SELECT DISTINCT cost * .10FROM productWHERE product_name = 'Widget Connector')WHERE product_name IN('Widget C - Round', 'Widget Connector');
UPDATE product SET cost = (SELECT cost * 1.10FROM productWHERE product_name = 'Widget Connector');
UPDATE product SET cost = (SELECT DISTINCT cost * 1.10FROM productWHERE product_name = 'Widget Connector'OR product_name = 'Widget C - Round')WHERE product_name = 'Widget Connector';
You cannot perform these updates using one DML statement.

Answer:
UPDATE product SET cost = (SELECT DISTINCT cost * 1.10FROM productWHERE product_name = 'Widget Connector')WHERE product_name IN('Widget C - Round', 'Widget Connector');

1Z0-061: DML

The statement that does not include the DISTINCT keyword in the subquery will cause an error. The question implies that there is
more than one product with a product_name of Widget Connector. Therefore, this query will return multiple values and cannot
be used with a single-row operator (=).
The statement that includes an OR condition in the WHERE clause of the subquery is incorrect. The inner query will return increased
cost values for products with either the name Widget Connector or the name Widget C - Round. If these products have
different costs, the query returns more than one row and an error is generated.
Subqueries used in a comparison with a single-row operator (such as =, >, <, >=, <=, and <>) must return only one row. Subqueries used in a comparison with a multiple-row operator (such as IN, ANY, and ALL) can return multiple rows.

1Z0-061: DML

The product table contains these columns:
PRODUCT_ID NUMBER NOT NULLPRODUCT_NAME VARCHAR2(25)SUPPLIER_ID NUMBERLIST_PRICE NUMBER(7,2)COST NUMBER(7,2)
You need to increase the list price and cost of all products supplied by GlobeComm, Inc. by 5.5 percent. The supplier_id for
GlobeComm is 105.
Which statement should you use?

Explanation:
You should use the following statement:
UPDATE productSET list_price = list_price * 1.055, cost = cost * 1.055WHERE supplier_id = 105;
In this scenario, you want to update the list price and cost by 5.5 percent for all products supplied by GlobeComm Corporation. This statement will correctly perform the needed updates. The WHERE clause will restrict those records updated to only those
records with supplier_id equal to 105. The SET clause will update both the list_price and cost columns appropriately.
The UPDATE statement that includes two SET clauses and the statement that includes the AND operator in the SET clause are both
incorrect. To update multiple columns in one UPDATE statement, the columns should be separated with commas and listed in one
SET clause. Including more than one SET clause or including the AND operator in the SET clause will generate an error.
The statement that includes the LIKE operator in the WHERE clause is incorrect. supplier_id is a numeric value, and the LIKE
operator is only valid with columns that have a character data type.

Item: 6 (Ref:1Z0-061.9.3.4)

UPDATE productSET list_price = list_price * 1.055SET cost = cost * 1.055WHERE supplier_id = 105;
UPDATE productSET list_price = list_price * .055 ANDcost = cost * .055WHERE supplier_id = 105;
UPDATE productSET list_price = list_price * 1.055, cost = cost * 1.055WHERE supplier_id = 105;
UPDATE productSET list_price = list_price + (list_price * .055), cost = cost + (cost * .055)WHERE supplier_id LIKE 'GlobeComm, Inc.';

Answer:
UPDATE productSET list_price = list_price * 1.055, cost = cost * 1.055WHERE supplier_id = 105;

1Z0-061: DML

Evaluate this statement:
DELETE FROM workorder;
What does this statement accomplish?

Explanation:
The given statement will delete all rows from the workorder table. The DELETE statement removes existing rows from a table,
but does not affect the table's structure. If you omit the WHERE clause, all the rows in the table will be deleted.
To delete a column from a table, use the ALTER TABLE statement.
To discard the structure of the table, use the DROP TABLE statement. The DELETE statement does not alter the table structure in
any way, but only affects the data.
This statement does not generate an error because the FROM keyword is allowed in the DELETE statement. However, the FROM
keyword can be omitted, and the same result occurs.
When used without a WHERE clause, the DELETE statement deletes all rows from a table, not just those that do not have NOT
NULL constraints. Therefore, this option is incorrect.
The DELETE statement does not affect the table's structure. Therefore, the option stating that it deletes all rows from the
workorder table and permanently discards the table's structure is incorrect.

Item: 7 (Ref:1Z0-061.9.4.3)

deletes the workorder column
discards only the structure of the workorder table
deletes all the rows from the workorder table
deletes all the values in the columns that do not have NOT NULL constraints
deletes all rows from the workorder table and permanently discards the table's structure
generates an error because the FROM keyword should not be included

Answer:
deletes all the rows from the workorder table

1Z0-061: DML

The product table contains these columns:
PRODUCT_ID NUMBER NOT NULLPRODUCT_NAME VARCHAR2(25)SUPPLIER_ID NUMBER NOT NULLLIST_PRICE NUMBER(7,2)COST NUMBER(5,2)QTY_IN_STOCK NUMBER(4)LAST_ORDER_DT DATE DEFAULT SYSDATE NOT NULL
Which INSERT statement will execute successfully?

Explanation:
The following INSERT statement will execute successfully:
INSERT INTO productVALUES (10,'Ladder-back Chair', 5, 59.99, 37.32 , 2, DEFAULT);
This statement is correct because the number and data type of the items in the values list matches that specified in the column list and a value is provided for all NOT NULL columns. Substitution variables can be used inside an INSERT statement to create
reusable scripts. Each time the statement is executed, the user is prompted for the values of the substitution variables.
The option that uses an explicit value of 10-JAN-08 for the last_order_dt in the VALUES clause is incorrect. Date and
character values within a VALUES clause must be enclosed in single quotation marks.
The option that uses an explicit value of 10000 for qty_in_stock in the VALUES clause is incorrect because this value is larger
than the column definition allows.
The option that includes four columns in the column list and only three values in the VALUES clause is incorrect. If columns are
explicitly provided in a column list, then all columns listed must be included in the VALUES clause with an explicit value, NULL, or
DEFAULT.
The option that specifies NULL in the VALUES clause for the supplier_id, list_price, cost, and qty_in_stock columns is
incorrect. The supplier_id column has a NOT NULL constraint and attempting to insert a NULL value for this column will
generate an error.

Item: 8 (Ref:1Z0-061.9.2.1)

INSERT INTO productVALUES (10,'Ladder-back Chair', 5, 59.99, 37.32 , 1000, 10-JAN-08);
INSERT INTO productVALUES (10,'Ladder-back Chair', 5, 59.99, 37.32 , 2, DEFAULT);
INSERT INTO product(product_id, supplier_id, list_price, last_order_dt)VALUES (10, 5, 65.99);
INSERT INTO productVALUES (10,'Ladder-back Chair', NULL, NULL, NULL, NULL, DEFAULT);
INSERT INTO productVALUES (10,'Ladder-back Chair', 5, 59.99, 37.32 , 10000, DEFAULT);

Answer:
INSERT INTO productVALUES (10,'Ladder-back Chair', 5, 59.99, 37.32 , 2, DEFAULT);

1Z0-061: DML

Examine the structures of the CURR_ORDER and LINE_ITEM tables:
CURR_ORDER-------------------------ORDER_ID NUMBER(9)CUSTOMER_ID NUMBER(9)ORDER_DATE DATESHIP_DATE DATE
LINE_ITEM------------------LINE_ITEM_ID NUMBER(9)ORDER_ID NUMBER(9)PRODUCT_ID NUMBER(9)QUANTITY NUMBER(5)
The ORDER_ID column in the LINE_ITEM table has a foreign key constraint to the CURR_ORDER table.
Which statement about these two tables is TRUE?

Explanation:
Because the ORDER_ID column in the LINE_ITEM table has a foreign key constraint referencing the ORDER_ID column in the
CURR_ORDER table, you must delete any child rows from the LINE_ITEM table before deleting the corresponding row from the
CURR_ORDER table. In this relationship, defined by the foreign key constraint, the CURR_ORDER table is the parent table and the
LINE_ITEM table is the child table. The foreign key constraint ensures that no child (LINE_ITEM) can be created unless it has a
parent (CURR_ORDER) and that no parent (CURR_ORDER) can be deleted if it has one or more children (LINE_ITEM).
With this defined relationship, you would also receive an integrity constraint error if you attempted to insert a row into the LINE_ITEM table and a parent row did not exist in the CURR_ORDER table.
You can insert a row into the CURR_ORDER table that has no associated LINE_ITEM row because the CURR_ORDER table is the
parent table.
The option stating that you can update a row in the CURR_ORDER table if the parent already exists in the LINE_ITEM table is
incorrect. In this scenario, the CURR_ORDER table is the parent table and the LINE_ITEM table is the child table.
To remove the constraint from the LINE_ITEM table, no conditions must be met. Therefore, the option that states you must delete
all records in the CURR_ORDER table is incorrect.
A parent is not required to have children records, so you can delete a row from the child table without necessarily deleting any rows from the parent table. When a row is deleted from the LINE_ITEM table, the associated parent row in the CURR_ORDER table
is not deleted. The order might contain more than one line item, and therefore the parent must be retained. You can, however, specify the ON DELETECASCADE option when defining the foreign key constraint to provide for automatically deleting children rows
when the parent is deleted.

Item: 9 (Ref:1Z0-061.9.4.1)

To insert a row into the CURR_ORDER table, you must insert a row into the LINE_ITEM table.
To delete a row from the CURR_ORDER table, you must first delete any child rows from the LINE_ITEM table.
To update a row in the CURR_ORDER table, the parent row must already exist in the LINE_ITEM table.
To remove the constraint from the LINE_ITEM table, you must delete all the corresponding rows in the CURR_ORDER table.
To delete a row from the LINE_ITEM table, you must delete the associated row in the CURR_ORDER table.
When a row is deleted from the LINE_ITEM table, the associated parent row in the CURR_ORDER table is also deleted.

Answer:
To delete a row from the CURR_ORDER table, you must first delete any child rows from the
LINE_ITEM table.

1Z0-061: DML

1Z0-061: DML

Which two statements would cause an implicit COMMIT to occur? (Choose two.)

Explanation:
Data Control Language (DCL) and Data Definition Language (DDL) statements cause an implicit commit when issued. DCL statements consist of commands such as GRANT and REVOKE, and are used to control access to the database and data. DDL
statements are used to create database objects and consist of statements like CREATE, DROP, ALTER, and RENAME.
All of the other options are incorrect because they do not cause an implicit COMMIT to occur. The SELECT statement queries data
from the database. Data Manipulation Language (DML) statements such as UPDATE, DELETE, INSERT, and MERGE do not cause
an implicit commit when issued. Transaction Control Language (TCL) statements such as COMMIT and ROLLBACK do not cause an
implicit commit either. The COMMIT statement causes an explicit commit of a transaction. The ROLLBACK statement rolls back any
uncommitted transactions.
A transaction begins when a DML statement is issued. The transaction terminates when an explicit COMMIT or ROLLBACK is
executed, a DDL or DCL statement is encountered, the user exits the session, or the session terminates abnormally, such as with a system crash or machine failure.

Item: 10 (Ref:1Z0-061.9.5.1)

GRANT
SELECT
RENAME
COMMIT
UPDATE
ROLLBACK

Answer:
GRANT
RENAME

1Z0-061: DML

The product table contains these columns:
PRODUCT_ID NUMBER PKNAME VARCHAR2(30)LIST_PRICE NUMBER(7,2)COST NUMBER(7,2)
You logged on to the database to update the product table. After your session began, you issued these statements:
INSERT INTO product VALUES(4,'Ceiling Fan',59.99,32.45);INSERT INTO product VALUES(5,'Ceiling Fan',69.99,37.20);SAVEPOINT A;UPDATE product SET cost = 0;SAVEPOINT B;DELETE FROM product WHERE UPPER(name) = 'CEILING FAN';ALTER TABLE product ADD qoh NUMBER DEFAULT 10;ROLLBACK TO B;UPDATE product SET name = 'CEILING FAN KIT' WHERE product_id = 4;
Then, you exit the session.
Which of the DML statements in this script performed either an INSERT, UPDATE, or DELETE that affected at least one row?

Explanation:
In this example, the INSERT statements, the UPDATE statement, and the DELETE statement are committed by this script. When the
ALTER TABLE statement is executed, an implicit commit occurs. This commits the updates performed in both INSERT statements,
the first UPDATE statement, and the DELETE statement. This implicit commit releases all held locks, erases all savepoints, and
writes the changes permanently to the database.
When the ROLLBACK TO B statement is issued, an error will occur stating that savepoint B was never established. Therefore, this
rollback statement has no effect. Then, the final UPDATE statement is issued but never committed.
Another implicit commit may possibly occur when you exit the session, and if so, this implicit COMMIT commits the changes made
by the last UPDATE statement. However, that work is not part of the script. This action will depend on the SQL*Plus settings
regarding the treatment of pending transactions when you exit that particular tool.
All options indicating that fewer or more rows were actually updated are false.

Item: 11 (Ref:1Z0-061.9.5.2)

only the INSERT statements
only the INSERT statements and the first UPDATE statement
the INSERT statements, the first UPDATE statement, and the DELETE statement
all of the DML operations
none of the DML operations

Answer:
the INSERT statements, the first UPDATE statement, and the DELETE statement

1Z0-061: DML

Click the Exhibit(s) button to examine the structures of the product and supplier tables. You want to delete any products
supplied by suppliers located in Dallas that have an in-stock quantity less than a specified value.
Which statement should you use?

Item: 12 (Ref:1Z0-061.9.4.2)

DELETE FROM productWHERE supplier_id = (SELECT supplier_id FROM supplierWHERE UPPER(city) = 'DALLAS')AND qty_in_stock < &qoh;
DELETE FROM productWHERE supplier_id IN (SELECT supplier_id FROM supplierWHERE UPPER(city) = 'DALLAS'AND qty_in_stock < &qoh);
DELETE FROM supplierWHERE supplier_id IN (SELECT supplier_id FROM supplierWHERE UPPER(city) = 'DALLAS')AND qty_in_stock < &qoh;
DELETE FROM productWHERE supplier_id IN (SELECT supplier_id FROM supplierWHERE UPPER(city) = 'DALLAS')AND qty_in_stock < &qoh;
DELETE FROM productWHERE supplier_id IN (SELECT supplier_id FROM supplierWHERE UPPER(city) = 'DALLAS'AND supplier_id IN(SELECT supplier_idFROM productWHERE qty_in_stock > &qoh));

Answer:
DELETE FROM productWHERE supplier_id IN (SELECT supplier_id FROM supplierWHERE UPPER(city) = 'DALLAS')AND qty_in_stock < &qoh;

1Z0-061: DML

Explanation:
You should use the following statement:
DELETE FROM productWHERE supplier_id IN (SELECT supplier_id FROM supplierWHERE UPPER(city) = 'DALLAS')AND qty_in_stock < &qoh;
The inner query returns a list of all suppliers in Dallas and passes this list to the main query. The main query then deletes only those products whose supplier_id is in the list of Dallas suppliers and whose qty_in_stock is less than the value input by the
user.
The statement that uses the equality operator (=) with the subquery in the WHERE clause is incorrect. The subquery returns all
suppliers with a city of DALLAS. Because the subquery can return more than one row, it cannot be used with a single-row operator.

The statement that uses WHERE UPPER(city) = 'DALLAS' AND qty_in_stock < &qoh) as the condition for the subquery
is incorrect. The qty_in_stock column resides in the product table, and only the supplier table is listed in the subquery's
FROM clause.
The statement that deletes from the supplier table is incorrect. You wanted to delete records from the product table, not the
supplier table.
The statement that includes nested subqueries is incorrect. Subqueries can be nested if needed, but this statement's innermost query presents a problem. The innermost query returns a list of suppliers that supply products for which you have the desired quantity on hand. It returns the results to the next level query, which returns a list of suppliers meeting both of the conditions. This would be all suppliers who are from Dallas and have products with the desired quantity. The DELETE query deletes all products for
this list of suppliers. These suppliers, although they do have products that need to be deleted, may have other products that do not meet the delete criteria. Therefore, this option is incorrect.

1Z0-061: DML

1Z0-061: DML

